Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system
Mohammed Lemou; Florian Méhats; Pierre Raphaël
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 5, page 825-833
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLemou, Mohammed, Méhats, Florian, and Raphaël, Pierre. "Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 825-833. <http://eudml.org/doc/78761>.
@article{Lemou2007,
author = {Lemou, Mohammed, Méhats, Florian, Raphaël, Pierre},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Vlasov-Poisson system; critical mass blow up solution; polytropic stationary solutions},
language = {eng},
number = {5},
pages = {825-833},
publisher = {Elsevier},
title = {Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system},
url = {http://eudml.org/doc/78761},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Lemou, Mohammed
AU - Méhats, Florian
AU - Raphaël, Pierre
TI - Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 825
EP - 833
LA - eng
KW - Vlasov-Poisson system; critical mass blow up solution; polytropic stationary solutions
UR - http://eudml.org/doc/78761
ER -
References
top- [1] Antonini C., Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations15 (6) (2002) 749-768. Zbl1016.35018MR1893845
- [2] Banica V., Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci.3 (1) (2004) 139-170. Zbl1170.35528MR2064970
- [3] Batt J., Faltenbacher W., Horst E., Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal.93 (1986) 159-183. Zbl0605.70008MR823117
- [4] Berestycki H., Lions P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (4) (1983) 313-345. Zbl0533.35029MR695535
- [5] Binney J., Tremaine S., Galactic Dynamics, Princeton University Press, 1987. Zbl1130.85301
- [6] Burq N., Gérard P., Tzvetkov N., Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal.13 (1) (2003) 1-19. Zbl1044.35084MR1978490
- [7] Chavanis P.-H., Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions, Phys. Rev. E69 (2004) 066126. MR2096500
- [8] Diperna R.J., Lions P.-L., Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino46 (3) (1988) 259-288. Zbl0813.35087MR1101105
- [9] Diperna R.J., Lions P.-L., Solutions globales d'équations du type Vlasov–Poisson, C. R. Acad. Sci. Paris Sér. I Math.307 (12) (1988) 655-658. Zbl0682.35022
- [10] Fridmann A.M., Polyachenko V.L., Physics of Gravitating Systems, Springer-Verlag, New York, 1984. Zbl0543.70010
- [11] Glassey R., The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Zbl0858.76001MR1379589
- [12] Hmidi T., Keraani S., Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not.46 (2005) 2815-2828. Zbl1126.35067MR2180464
- [13] Horst E., Hunze R., Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci.6 (2) (1984) 262-279. Zbl0556.35022MR751745
- [14] Kwong M.K., Uniqueness of positive solutions of in , Arch. Rational Mech. Anal.105 (3) (1989) 243-266. Zbl0676.35032MR969899
- [15] Lemou M., Méhats F., Raphael P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, C. R. Math. Acad. Sci. Paris, Ser. I341 (4) (2005) 269-274. Zbl1073.70012MR2164685
- [16] M. Lemou, F. Méhats, P. Raphael, On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, preprint. Zbl1221.35417
- [17] Lions P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (2) (1984) 109-145. Zbl0541.49009MR778970
- [18] Lions P.-L., Perthame B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math.105 (2) (1991). Zbl0741.35061
- [19] Martel Y., Merle F., Nonexistence of blow-up solution with minimal -mass for the critical gKdV equation, Duke Math. J.115 (2) (2002) 385-408. Zbl1033.35102MR1944576
- [20] Martel Y., Merle F., Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2)155 (1) (2002) 235-280. Zbl1005.35081MR1888800
- [21] Merle F., Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J.69 (2) (1993) 427-454. Zbl0808.35141MR1203233
- [22] Merle F., Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (5) (1996) 553-565. Zbl0862.35013MR1409662
- [23] Merle F., Raphaël P., On Universality of Blow up Profile for critical nonlinear Schrödinger equation, Invent. Math.156 (2004) 565-672. Zbl1067.35110MR2061329
- [24] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.