Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system

Mohammed Lemou; Florian Méhats; Pierre Raphaël

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 5, page 825-833
  • ISSN: 0294-1449

How to cite

top

Lemou, Mohammed, Méhats, Florian, and Raphaël, Pierre. "Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 825-833. <http://eudml.org/doc/78761>.

@article{Lemou2007,
author = {Lemou, Mohammed, Méhats, Florian, Raphaël, Pierre},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Vlasov-Poisson system; critical mass blow up solution; polytropic stationary solutions},
language = {eng},
number = {5},
pages = {825-833},
publisher = {Elsevier},
title = {Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system},
url = {http://eudml.org/doc/78761},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Lemou, Mohammed
AU - Méhats, Florian
AU - Raphaël, Pierre
TI - Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 825
EP - 833
LA - eng
KW - Vlasov-Poisson system; critical mass blow up solution; polytropic stationary solutions
UR - http://eudml.org/doc/78761
ER -

References

top
  1. [1] Antonini C., Lower bounds for the L 2 minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations15 (6) (2002) 749-768. Zbl1016.35018MR1893845
  2. [2] Banica V., Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci.3 (1) (2004) 139-170. Zbl1170.35528MR2064970
  3. [3] Batt J., Faltenbacher W., Horst E., Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal.93 (1986) 159-183. Zbl0605.70008MR823117
  4. [4] Berestycki H., Lions P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (4) (1983) 313-345. Zbl0533.35029MR695535
  5. [5] Binney J., Tremaine S., Galactic Dynamics, Princeton University Press, 1987. Zbl1130.85301
  6. [6] Burq N., Gérard P., Tzvetkov N., Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal.13 (1) (2003) 1-19. Zbl1044.35084MR1978490
  7. [7] Chavanis P.-H., Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions, Phys. Rev. E69 (2004) 066126. MR2096500
  8. [8] Diperna R.J., Lions P.-L., Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino46 (3) (1988) 259-288. Zbl0813.35087MR1101105
  9. [9] Diperna R.J., Lions P.-L., Solutions globales d'équations du type Vlasov–Poisson, C. R. Acad. Sci. Paris Sér. I Math.307 (12) (1988) 655-658. Zbl0682.35022
  10. [10] Fridmann A.M., Polyachenko V.L., Physics of Gravitating Systems, Springer-Verlag, New York, 1984. Zbl0543.70010
  11. [11] Glassey R., The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Zbl0858.76001MR1379589
  12. [12] Hmidi T., Keraani S., Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not.46 (2005) 2815-2828. Zbl1126.35067MR2180464
  13. [13] Horst E., Hunze R., Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci.6 (2) (1984) 262-279. Zbl0556.35022MR751745
  14. [14] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Rational Mech. Anal.105 (3) (1989) 243-266. Zbl0676.35032MR969899
  15. [15] Lemou M., Méhats F., Raphael P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, C. R. Math. Acad. Sci. Paris, Ser. I341 (4) (2005) 269-274. Zbl1073.70012MR2164685
  16. [16] M. Lemou, F. Méhats, P. Raphael, On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, preprint. Zbl1221.35417
  17. [17] Lions P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (2) (1984) 109-145. Zbl0541.49009MR778970
  18. [18] Lions P.-L., Perthame B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math.105 (2) (1991). Zbl0741.35061
  19. [19] Martel Y., Merle F., Nonexistence of blow-up solution with minimal L 2 -mass for the critical gKdV equation, Duke Math. J.115 (2) (2002) 385-408. Zbl1033.35102MR1944576
  20. [20] Martel Y., Merle F., Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2)155 (1) (2002) 235-280. Zbl1005.35081MR1888800
  21. [21] Merle F., Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J.69 (2) (1993) 427-454. Zbl0808.35141MR1203233
  22. [22] Merle F., Asymptotics for L 2 minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (5) (1996) 553-565. Zbl0862.35013MR1409662
  23. [23] Merle F., Raphaël P., On Universality of Blow up Profile for L 2 critical nonlinear Schrödinger equation, Invent. Math.156 (2004) 565-672. Zbl1067.35110MR2061329
  24. [24] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.