Multibump solutions for a class of lagrangian systems slowly oscillating at infinity
Francesca Alessio; Piero Montecchiari
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 1, page 107-135
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAlessio, Francesca, and Montecchiari, Piero. "Multibump solutions for a class of lagrangian systems slowly oscillating at infinity." Annales de l'I.H.P. Analyse non linéaire 16.1 (1999): 107-135. <http://eudml.org/doc/78457>.
@article{Alessio1999,
author = {Alessio, Francesca, Montecchiari, Piero},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lagrangian systems; Hamiltonian systems; homoclinic orbits; multibump solutions; minimax arguments},
language = {eng},
number = {1},
pages = {107-135},
publisher = {Gauthier-Villars},
title = {Multibump solutions for a class of lagrangian systems slowly oscillating at infinity},
url = {http://eudml.org/doc/78457},
volume = {16},
year = {1999},
}
TY - JOUR
AU - Alessio, Francesca
AU - Montecchiari, Piero
TI - Multibump solutions for a class of lagrangian systems slowly oscillating at infinity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 1
SP - 107
EP - 135
LA - eng
KW - Lagrangian systems; Hamiltonian systems; homoclinic orbits; multibump solutions; minimax arguments
UR - http://eudml.org/doc/78457
ER -
References
top- [1] F. Alessio, Homoclinic solutions for second order systems with expansive time dependence, preprint, 1996. Zbl0881.34067MR1463919
- [2] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., to appear. Zbl0896.35042
- [3] A. Ambrosetti and M.L. Bertotti, , Homoclinics for second order conservative systems, Partial differential equation and related subjects, Ed. M.Miranda, Pitman Research Notes in Math. Ser., 1992. Zbl0804.34046MR1190931
- [4] A. Ambrosetti and V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Padova, Vol. 89,1993, pp. 177-194. Zbl0806.58018MR1229052
- [5] U. Bessi, A Variational Proof of a Sitnikov-like Theorem, Nonlinear Anal. TMA, Vol. 20, 1993, pp. 1303-1318. Zbl0778.34036MR1220837
- [6] M.L. Bertotti and S. Bolotin, A variational approach for homoclinics in almost periodic Hamiltonian systems, Comm. Appl. Nonlinear Analysis, Vol. 2, 1995, pp. 43-57. Zbl0858.34039MR1355162
- [7] S. Bolotin, Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. MeKh., Vol.6, 1980, pp. 98-103. Zbl0549.58019MR728558
- [8] B. Buffoni and E. Séré, A global condition for quasi random behaviour in a class of conservative systems, preprint, 1995. Zbl0860.58027MR1374173
- [9] P. Caldiroli and P. Montecchiari, Homoclinics orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Analysis, Vol. 1, 1994, pp. 97-129. Zbl0867.70012MR1280118
- [10] P. Caldiroli, P. Montecchiari and M. Nolasco, Asymptotic behaviour for a class of multibump solutions to Duffing-like systems, Proc. of the Workshop on Variational and Local Methods in the study of Hamiltonian systems, World Scientific, 1995. Zbl0951.37013MR1414014
- [11] K. Cieliebak and E. Séré, Pseudo-holomorphic curves and the shadowing Lemma, Duke Math. Journ., to appear. Zbl0955.37039
- [12] V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. Zbl0731.34050MR1070929
- [13] V. Coti Zelati, P. Montecchiari and M. Nolasco, Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NODEA, to appear. Zbl0878.34045
- [14] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. Zbl0744.34045MR1119200
- [15] M. Del Pino and P.L. Felmer, Multipeak bound states for nonlinear Schrödinger equations, Ann. IHP Anal. Nonlinéaire, to appear. Zbl0901.35023MR1614646
- [16] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. in PDE, Vol. 21, 1996, pp. 787-820. Zbl0857.35116MR1391524
- [17] H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 228, 1990, pp. 483-503. Zbl0702.34039MR1079873
- [18] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., part 2., Ann.IHP Anal. Nonlinéaire, Vol. 1, 1984, pp. 109-145, 223-283. Zbl0541.49009MR778970
- [19] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., Vol. 3, 1940, pp. 5-7. Zbl0024.02203MR4775
- [20] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), Vol. 168, 1995, pp. 317-354. Zbl0849.34035MR1378249
- [21] P. Montecchiari, M. Nolasco and S. Terracini, Multiplicity of homoclinics for time recurrent second order systems, Calculus of Variations, to appear. Zbl0886.58014
- [22] P. Montecchiari, M. Nolasco and S. Terracini, A global condition for periodic Duffing-like equations, preprint, SISSA, 1995. Zbl0926.37005MR1487629
- [23] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, Vol. 114 A, 1990, pp. 33-38. Zbl0705.34054MR1051605
- [24] P.H. Rabinowitz, Multibump solutions for an almost periodically forced singular Hamiltonian system, preprint, 1995. Zbl0828.34034MR1348521
- [25] P.H. Rabinowitz, A multibump construction in a degenerate setting, preprint, 1996. Zbl0876.34055MR1433175
- [26] P.H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol 206, 1991, pp. 473-479. Zbl0707.58022MR1095767
- [27] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., Vol. 209, 1991, pp. 27-42. Zbl0725.58017MR1143210
- [28] E. Séré, Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, Vol. 10, 1993, pp. 561-590. Zbl0803.58013MR1249107
- [29] E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. IHP Anal. Nonlinéaire, to appear. Zbl0873.58032MR1420498
- [30] S. Wiggins, Global bifurcation and chaos, Applied Mathematical Sciences, Springer-Verlag, Vol. 73,1988. Zbl0661.58001
Citations in EuDML Documents
top- Gregory S. Spradlin, An elliptic equation with no monotonicity condition on the nonlinearity
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Infinitely many solutions for a class of semilinear elliptic equations in
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.