Reaction-diffusion problems in cylinders with no invariance by translation. Part II : monotone perturbations

François Hamel

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 5, page 555-596
  • ISSN: 0294-1449

How to cite

top

Hamel, François. "Reaction-diffusion problems in cylinders with no invariance by translation. Part II : monotone perturbations." Annales de l'I.H.P. Analyse non linéaire 14.5 (1997): 555-596. <http://eudml.org/doc/78421>.

@article{Hamel1997,
author = {Hamel, François},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {monotonicity properties; sliding method; existence},
language = {eng},
number = {5},
pages = {555-596},
publisher = {Gauthier-Villars},
title = {Reaction-diffusion problems in cylinders with no invariance by translation. Part II : monotone perturbations},
url = {http://eudml.org/doc/78421},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Hamel, François
TI - Reaction-diffusion problems in cylinders with no invariance by translation. Part II : monotone perturbations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 5
SP - 555
EP - 596
LA - eng
KW - monotonicity properties; sliding method; existence
UR - http://eudml.org/doc/78421
ER -

References

top
  1. [1] S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., Vol. 16, 1963, pp. 121-239. Zbl0117.10001MR155203
  2. [2] D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. in Math., Vol. 30, 1978, pp. 33-58. Zbl0407.92014MR511740
  3. [3] H. Berestycki and B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées, Nonlinear p.d.e. and their applications, Collège de France seminar, Vol. 10, Brézis and Lions eds, PitmanLongman, Harbow, UK, 1990. Zbl0755.35090MR1131819
  4. [4] H. Berestycki and B. Larrouturou, A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model, J. Reine Angew. Math., Vol. 396, 1989, pp. 14-40. Zbl0658.35036MR988546
  5. [5] H. Berestycki, B. Larrouturou and P.L. Lions, Multidimensional traveling-wave solutions of a flame propagation model, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 33-49. Zbl0711.35066MR1051478
  6. [6] H. Berestycki, B. Larrouturou and J.M. Roquejoffre, Stability of traveling fronts in a curved flame model, Part I, Linear Analysis, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 97-117. Zbl0763.76033MR1145107
  7. [7] H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Analyse Non Linéaire, Vol. 9, 5, 1992, pp. 497-572. Zbl0799.35073MR1191008
  8. [8] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. da Soc. Braseleira de Matematica, Vol. 22, 1991, pp. 1-37. Zbl0784.35025MR1159383
  9. [9] P.C. Fife and J.B. Mcleod, The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Rat. Mech. Anal., Vol. 65, 1977, pp. 335-361. Zbl0361.35035MR442480
  10. [10] F. Hamel, Reaction-diffusion problems in cylinders with no invariance by translation, part I: Small perturbations, Ann. Inst. H. Poincaré, Analyse Non Linéaire, Vol. 14, 1997, pp. 457-498. Zbl0889.35035MR1464531
  11. [11] F. Hamel, Formules min-max pour les vitesses d'ondes progressives multidimensionnelles, preprint Labo. Ana. Num., n° 96032, Univ. Paris VI, France, 1996. 
  12. [12] Ja.I. Kanel', Stabilization of solution of the Cauchy problem for equations encountred in combustion theory, Mat. Sbornik., Vol. 59, 1962, pp. 245-288. Zbl0152.10302MR157130
  13. [13] A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat à Moscow (Bjul. Moskowskogo Gos. Univ.), Série intemationale, section A.1, 1937, pp. 1-26. Zbl0018.32106
  14. [14] A. Liñan, Fluid Dynamic Aspects of Combustion Theory, course of IAC. Mauro Picone, Rome, 1989. 
  15. [15] A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rat. Mech. Anal., Vol. 24, 1967, pp. 193-218. Zbl0147.12303MR209618
  16. [16] G.I. Sivashinsky, Instabilities, pattern formation and turbulence in flames, Ann. Rev. Fluid Mech., Vol. 15, 1983, pp. 179-199. Zbl0538.76053
  17. [17] J.M. Vega, On the uniqueness of multidimensional travelling fronts of some semilinear equations, J. Math. Anal. Appl., Vol. 177, 1993, pp. 481-490. Zbl0816.35035MR1231495
  18. [18] J.M. Vega, The asymptotic behavior of the solutions of some semilinear elliptic equations in cylindrical domains, J. Diff. Eq., Vol. 102, 1993, pp. 119-152. Zbl0803.35058MR1209980
  19. [19] V.A. Volpert and A.I. Volpert, Existence and Stability of Stationary Solutions for a Class of Semilinear Parabolic Systems, Comm. in Part. Diff. Eq., Vol. 18, 1993, pp. 2051-2069. Zbl0819.35076MR1249134
  20. [20] F. Williams, Combustion Theory, Addison-Wesley, reading MA, 1983. 
  21. [21] X. Xin, Existence and Uniqueness of Travelling Waves in a Reaction-Diffusion Equation with Combustion Nonlinearity, Idiana Univ. Math. J., Vol. 40, No 3, 1991. Zbl0727.35070MR1129338
  22. [22] X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Rat. Mech. Analysis, Vol. 121, 1992, pp. 205-233. Zbl0764.76074MR1188981
  23. [23] X. Xin, Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity, J. Dyn. Diff. Eq., Vol. 3, 1991, pp. 541-573. Zbl0769.35033MR1129560
  24. [24] X. Xin, Existence and non existence of travelling waves and reaction-diffusion front propagation in periodic media, J. Statist. Phys., Vol. 73, 1993, pp. 893-926. Zbl1102.35340MR1251222
  25. [25] J.B. Zeldovich and D.A. Frank-Kamenetskii, A theory of thermal propagation of flame, Acta physiochimica URSS, Vol. 9, 1938. English translation in Dynamics of curved fronts, R. Pelcé ed., Perspectives in Physics Series, Academic Press, New York, 1988, pp. 131-140. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.