Approximate solutions of the incompressible Euler equations with no concentrations
Milton C. Lopes Filho; Helena J. Nussenzveig Lopes; Eitan Tadmor
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 3, page 371-412
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLopes Filho, Milton C., Nussenzveig Lopes, Helena J., and Tadmor, Eitan. "Approximate solutions of the incompressible Euler equations with no concentrations." Annales de l'I.H.P. Analyse non linéaire 17.3 (2000): 371-412. <http://eudml.org/doc/78496>.
@article{LopesFilho2000,
author = {Lopes Filho, Milton C., Nussenzveig Lopes, Helena J., Tadmor, Eitan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {approximate solutions; plane; incompressible ideal fluid flow; Euler equations; regularity; existence},
language = {eng},
number = {3},
pages = {371-412},
publisher = {Gauthier-Villars},
title = {Approximate solutions of the incompressible Euler equations with no concentrations},
url = {http://eudml.org/doc/78496},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Lopes Filho, Milton C.
AU - Nussenzveig Lopes, Helena J.
AU - Tadmor, Eitan
TI - Approximate solutions of the incompressible Euler equations with no concentrations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 3
SP - 371
EP - 412
LA - eng
KW - approximate solutions; plane; incompressible ideal fluid flow; Euler equations; regularity; existence
UR - http://eudml.org/doc/78496
ER -
References
top- [1] Adams R., Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, 1975. Zbl0314.46030MR450957
- [2] Anderson C., An Introduction to Vortex Methods, Lecture Notes in Math., Vol. 1360, Springer, Berlin, 1968. Zbl0648.00012MR979555
- [3] Bell J.B., Colella P., Glaz H.M., A Second-order projection method for the incompressible Navier-Stokes equations, JCP85 (1989) 257-283. Zbl0681.76030MR1029192
- [4] Bennett C., Intermediate spaces and the class L log+ L, Arkiv Mat.2 (1973) 215-228. Zbl0266.46025MR352966
- [5] Bennett C., Rudnick K., On Lorentz-Zygmund spaces, Dissert. Math.175 (1980) 1-72. Zbl0456.46028MR576995
- [6] Bennett C., Sharpley R., Interpolation of Operators, Pure and Applied Mathematics, Vol. 129, Academic Press, 1988. Zbl0647.46057MR928802
- [7] Chacon-Rebollo T., Hou T., A Lagrangian finite element method for the 2-D Euler equations, CPAM43 (1990) 735-767. Zbl0705.76059MR1059327
- [8] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable solutions of the Navier-Stokes equations, CPAM35 (1982) 771-831. Zbl0509.35067MR673830
- [9] Chae D., Weak solutions of 2-D Euler equations with initial vorticity in L(log L), J. Differential Equations103 (1993) 323-337. Zbl0854.35082MR1221908
- [10] Chae D., Weak solutions of 2-D incompressible Euler equations, Nonlin. Analysis: TMA23 (1994) 629-638. Zbl0814.76022MR1297282
- [11] Chen G.-Q., The theory of compensated compactness and the system of isentropic gas dynamics, Preprint, MSRI-00527-91, Math. Sci. Res. Inst., Berkeley.
- [12] Chorin A., A numerical method for solving incompressible viscous flow problems, JCP2 (1967) 12-26. Zbl0149.44802
- [13] Constantin P., E W. Titi E., Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys.165 (1994) 207-209. Zbl0818.35085MR1298949
- [14] DeVore R., Lucier B., Wavelets, Acta Numerica1 (1992) 1-56. Zbl0766.65009MR1165722
- [15] DiPerna R., Lions P.-L., Ordinary differential equations Sobolev spaces and transport theory, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
- [16] DiPerna R., Majda A., Concentrations in regularizations for 2D incompressible flow, Comm. Pure Appl. Math.40 (1987) 301-345. Zbl0850.76730MR882068
- [ 17] DiPerna R., Majda A., Reduced Hausdorff dimension and concentration-cancelation for 2-D incompressible flow, J. Amer. Math. Soc.1 (1988) 59-95. Zbl0707.76026MR924702
- [18] DiPerna R., Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys.108 (1987) 667-689. Zbl0626.35059MR877643
- [19] Delort J.-M., Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc.4 (1991) 553-586. Zbl0780.35073MR1102579
- [20] Donaldson T.K., Trudinger N.S., Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal.8 (1971) 52-75. Zbl0216.15702MR301500
- [21] E W., Liu J.-G., Finite difference schemes for incompressible flows in the velocity impulse density formulation, JCP130 (1997) 67-76. Zbl0870.76048MR1427404
- [22] Giga Y., Miyakawa T., Navier-Stokes flows in R3 and Morrey spaces, Comm. PDE14 (1989) 577-618. Zbl0681.35072MR993821
- [23] Henshaw W., Kreiss H.-O., Reyna L., A forth-order accurate difference approximation for the incompressible Navier-Stokes equations, Comput. Fluids23 (1994) 575-593. Zbl0801.76055MR1264751
- [24] Hou T.Y., Wetton B.T.R., Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries, SINUM30 (3) (1993) 609-629. Zbl0776.76055MR1220643
- [25] Hounie J., Lopes Filho M.C., Nussenzveig Lopes H.J., Schochet S., A priori temporal regularity for the streamfunction of 2D incompressible, inviscid flow, Nonlinear Analysis Theor.35 (1999) 871-884. Zbl0920.35111MR1664898
- [26] Krasny R., Computing vortex sheet motion, in: Proc. Inter. Congress Math. Vol. I, II, Kyoto1990, Math. Soc. Japan, 1991, pp. 1573-1583. Zbl0748.76029MR1159338
- [27] Levy D., Tadmor E., Non-oscillatory central schemes for the incompressible 2-D Euler equations, Mathematical Research Letters4 (1997) 1-20. Zbl0883.76057MR1453063
- [28] Lin F., A new proof of Caffarelli-Kohn-Nirenberg's theorem, Preprint. MR1488514
- [29] Liu J.G., Xin Z., Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, CPAM48 (1995) 611-628. Zbl0829.35098MR1338471
- [30] Lions P.L., Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, Vol. 3, Clarendon Press, 1996. Zbl0866.76002MR1422251
- [31] Majda A., Remarks on weak solutions for vortex sheets with a distinguished sign, Ind. Univ. Math. J.42 (1993) 921-939. Zbl0791.76015MR1254126
- [32] Meyer Y., Wavelets and Operators, Cambridge Studies in Mathematics, Vol. 37, Cambridge Univ. Press, 1992. Zbl0776.42019MR1228209
- [33] Morgulis A.B., On existence of two-dimensional nonstationary flows of an ideal incompressible liquid admitting a curl nonsummable to any power greater than 1, Siberian Math. J.33 (1992) 934-937. Zbl0811.76007MR1197088
- [34] Murat F., A survey on compensated compactness, in: Cesari L. (Ed.), Contributions to Modern Calculus of Variations, Pitman Research Notes in Mathematics Series, Wiley, New York, 1987, pp. 145-183. MR894077
- [35] Nussenzveig Lopes H.J., A refined estimate of the size of concentration sets for 2D incompressible inviscid flow, Ind. Univ. Math. J.46 (1997) 165-182. Zbl0882.76016MR1462801
- [36] Onsager L., Statistical hydrodynamics, Nuovo Cimento (Supplemento)6 (1949) 279-287. MR36116
- [37] Scheffer V., An inviscid flow with compact support in space-time, J. Geom. Anal.3 (1993) 343-401. Zbl0836.76017MR1231007
- [38] Schochet S., The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math.49 (1996) 911-965. Zbl0862.35092MR1399201
- [39] Shnirelman A., On the non-uniqueness of weak solution of the Euler equations, Comm. Pure Appl. Math.50 (1997) 1261-1286. Zbl0909.35109MR1417742
- [40] Tartar L., Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, IV, Pitman, London, 1979. Zbl0437.35004MR584398
- [41] Temam R., Navier-Stokes Equations, North-Holland, Amsterdam, 1977. Zbl0383.35057MR603444
- [42] Tian G., Xin Z., Gradient estimation on Navier-Stokes equations, Preprint. Zbl0939.35139MR1685610
- [43] Trudinger N., On imbeddings into Orlicz spaces and some applications, J. Math. and Mechanics17 (1967) 473-483. Zbl0163.36402MR216286
- [44] Vecchi I., Wu S., On L1-vorticity for 2-D incompressible flow, Manuscripta Math.78 (1993) 403-412. Zbl0807.35115MR1208650
- [45] Vishik M., Hydrodynamics in Besov spaces, Anch. Rat. Mech. Anal.145 (1998) 197-214. Zbl0926.35123MR1664597
- [46] Vishik M., Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup.32 (1999) 769-812. Zbl0938.35128MR1717576
- [47] Yudovich V.I., Non-stationary flow of an ideal incompressible liquid, USSR Comp. Math. and Math. Phys.3 (1963) 1407-1456. English transl. Zbl0147.44303
- [48] Yudovich V.I., Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Letters2 (1995) 27-38. Zbl0841.35092MR1312975
- [49] Ziemer W.P., Weakly Differentiable Functions, Graduate Texts in Mathematics, Vol. 120, Springer, 1989. Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.