Approximate solutions of the incompressible Euler equations with no concentrations

Milton C. Lopes Filho; Helena J. Nussenzveig Lopes; Eitan Tadmor

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 3, page 371-412
  • ISSN: 0294-1449

How to cite

top

Lopes Filho, Milton C., Nussenzveig Lopes, Helena J., and Tadmor, Eitan. "Approximate solutions of the incompressible Euler equations with no concentrations." Annales de l'I.H.P. Analyse non linéaire 17.3 (2000): 371-412. <http://eudml.org/doc/78496>.

@article{LopesFilho2000,
author = {Lopes Filho, Milton C., Nussenzveig Lopes, Helena J., Tadmor, Eitan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {approximate solutions; plane; incompressible ideal fluid flow; Euler equations; regularity; existence},
language = {eng},
number = {3},
pages = {371-412},
publisher = {Gauthier-Villars},
title = {Approximate solutions of the incompressible Euler equations with no concentrations},
url = {http://eudml.org/doc/78496},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Lopes Filho, Milton C.
AU - Nussenzveig Lopes, Helena J.
AU - Tadmor, Eitan
TI - Approximate solutions of the incompressible Euler equations with no concentrations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 3
SP - 371
EP - 412
LA - eng
KW - approximate solutions; plane; incompressible ideal fluid flow; Euler equations; regularity; existence
UR - http://eudml.org/doc/78496
ER -

References

top
  1. [1] Adams R., Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] Anderson C., An Introduction to Vortex Methods, Lecture Notes in Math., Vol. 1360, Springer, Berlin, 1968. Zbl0648.00012MR979555
  3. [3] Bell J.B., Colella P., Glaz H.M., A Second-order projection method for the incompressible Navier-Stokes equations, JCP85 (1989) 257-283. Zbl0681.76030MR1029192
  4. [4] Bennett C., Intermediate spaces and the class L log+ L, Arkiv Mat.2 (1973) 215-228. Zbl0266.46025MR352966
  5. [5] Bennett C., Rudnick K., On Lorentz-Zygmund spaces, Dissert. Math.175 (1980) 1-72. Zbl0456.46028MR576995
  6. [6] Bennett C., Sharpley R., Interpolation of Operators, Pure and Applied Mathematics, Vol. 129, Academic Press, 1988. Zbl0647.46057MR928802
  7. [7] Chacon-Rebollo T., Hou T., A Lagrangian finite element method for the 2-D Euler equations, CPAM43 (1990) 735-767. Zbl0705.76059MR1059327
  8. [8] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable solutions of the Navier-Stokes equations, CPAM35 (1982) 771-831. Zbl0509.35067MR673830
  9. [9] Chae D., Weak solutions of 2-D Euler equations with initial vorticity in L(log L), J. Differential Equations103 (1993) 323-337. Zbl0854.35082MR1221908
  10. [10] Chae D., Weak solutions of 2-D incompressible Euler equations, Nonlin. Analysis: TMA23 (1994) 629-638. Zbl0814.76022MR1297282
  11. [11] Chen G.-Q., The theory of compensated compactness and the system of isentropic gas dynamics, Preprint, MSRI-00527-91, Math. Sci. Res. Inst., Berkeley. 
  12. [12] Chorin A., A numerical method for solving incompressible viscous flow problems, JCP2 (1967) 12-26. Zbl0149.44802
  13. [13] Constantin P., E W. Titi E., Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys.165 (1994) 207-209. Zbl0818.35085MR1298949
  14. [14] DeVore R., Lucier B., Wavelets, Acta Numerica1 (1992) 1-56. Zbl0766.65009MR1165722
  15. [15] DiPerna R., Lions P.-L., Ordinary differential equations Sobolev spaces and transport theory, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
  16. [16] DiPerna R., Majda A., Concentrations in regularizations for 2D incompressible flow, Comm. Pure Appl. Math.40 (1987) 301-345. Zbl0850.76730MR882068
  17. [ 17] DiPerna R., Majda A., Reduced Hausdorff dimension and concentration-cancelation for 2-D incompressible flow, J. Amer. Math. Soc.1 (1988) 59-95. Zbl0707.76026MR924702
  18. [18] DiPerna R., Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys.108 (1987) 667-689. Zbl0626.35059MR877643
  19. [19] Delort J.-M., Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc.4 (1991) 553-586. Zbl0780.35073MR1102579
  20. [20] Donaldson T.K., Trudinger N.S., Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal.8 (1971) 52-75. Zbl0216.15702MR301500
  21. [21] E W., Liu J.-G., Finite difference schemes for incompressible flows in the velocity impulse density formulation, JCP130 (1997) 67-76. Zbl0870.76048MR1427404
  22. [22] Giga Y., Miyakawa T., Navier-Stokes flows in R3 and Morrey spaces, Comm. PDE14 (1989) 577-618. Zbl0681.35072MR993821
  23. [23] Henshaw W., Kreiss H.-O., Reyna L., A forth-order accurate difference approximation for the incompressible Navier-Stokes equations, Comput. Fluids23 (1994) 575-593. Zbl0801.76055MR1264751
  24. [24] Hou T.Y., Wetton B.T.R., Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries, SINUM30 (3) (1993) 609-629. Zbl0776.76055MR1220643
  25. [25] Hounie J., Lopes Filho M.C., Nussenzveig Lopes H.J., Schochet S., A priori temporal regularity for the streamfunction of 2D incompressible, inviscid flow, Nonlinear Analysis Theor.35 (1999) 871-884. Zbl0920.35111MR1664898
  26. [26] Krasny R., Computing vortex sheet motion, in: Proc. Inter. Congress Math. Vol. I, II, Kyoto1990, Math. Soc. Japan, 1991, pp. 1573-1583. Zbl0748.76029MR1159338
  27. [27] Levy D., Tadmor E., Non-oscillatory central schemes for the incompressible 2-D Euler equations, Mathematical Research Letters4 (1997) 1-20. Zbl0883.76057MR1453063
  28. [28] Lin F., A new proof of Caffarelli-Kohn-Nirenberg's theorem, Preprint. MR1488514
  29. [29] Liu J.G., Xin Z., Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, CPAM48 (1995) 611-628. Zbl0829.35098MR1338471
  30. [30] Lions P.L., Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, Vol. 3, Clarendon Press, 1996. Zbl0866.76002MR1422251
  31. [31] Majda A., Remarks on weak solutions for vortex sheets with a distinguished sign, Ind. Univ. Math. J.42 (1993) 921-939. Zbl0791.76015MR1254126
  32. [32] Meyer Y., Wavelets and Operators, Cambridge Studies in Mathematics, Vol. 37, Cambridge Univ. Press, 1992. Zbl0776.42019MR1228209
  33. [33] Morgulis A.B., On existence of two-dimensional nonstationary flows of an ideal incompressible liquid admitting a curl nonsummable to any power greater than 1, Siberian Math. J.33 (1992) 934-937. Zbl0811.76007MR1197088
  34. [34] Murat F., A survey on compensated compactness, in: Cesari L. (Ed.), Contributions to Modern Calculus of Variations, Pitman Research Notes in Mathematics Series, Wiley, New York, 1987, pp. 145-183. MR894077
  35. [35] Nussenzveig Lopes H.J., A refined estimate of the size of concentration sets for 2D incompressible inviscid flow, Ind. Univ. Math. J.46 (1997) 165-182. Zbl0882.76016MR1462801
  36. [36] Onsager L., Statistical hydrodynamics, Nuovo Cimento (Supplemento)6 (1949) 279-287. MR36116
  37. [37] Scheffer V., An inviscid flow with compact support in space-time, J. Geom. Anal.3 (1993) 343-401. Zbl0836.76017MR1231007
  38. [38] Schochet S., The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math.49 (1996) 911-965. Zbl0862.35092MR1399201
  39. [39] Shnirelman A., On the non-uniqueness of weak solution of the Euler equations, Comm. Pure Appl. Math.50 (1997) 1261-1286. Zbl0909.35109MR1417742
  40. [40] Tartar L., Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, IV, Pitman, London, 1979. Zbl0437.35004MR584398
  41. [41] Temam R., Navier-Stokes Equations, North-Holland, Amsterdam, 1977. Zbl0383.35057MR603444
  42. [42] Tian G., Xin Z., Gradient estimation on Navier-Stokes equations, Preprint. Zbl0939.35139MR1685610
  43. [43] Trudinger N., On imbeddings into Orlicz spaces and some applications, J. Math. and Mechanics17 (1967) 473-483. Zbl0163.36402MR216286
  44. [44] Vecchi I., Wu S., On L1-vorticity for 2-D incompressible flow, Manuscripta Math.78 (1993) 403-412. Zbl0807.35115MR1208650
  45. [45] Vishik M., Hydrodynamics in Besov spaces, Anch. Rat. Mech. Anal.145 (1998) 197-214. Zbl0926.35123MR1664597
  46. [46] Vishik M., Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup.32 (1999) 769-812. Zbl0938.35128MR1717576
  47. [47] Yudovich V.I., Non-stationary flow of an ideal incompressible liquid, USSR Comp. Math. and Math. Phys.3 (1963) 1407-1456. English transl. Zbl0147.44303
  48. [48] Yudovich V.I., Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Letters2 (1995) 27-38. Zbl0841.35092MR1312975
  49. [49] Ziemer W.P., Weakly Differentiable Functions, Graduate Texts in Mathematics, Vol. 120, Springer, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.