Numerical evidence of nonuniqueness in the evolution of vortex sheets
Milton C. Lopes Filho; John Lowengrub; Helena J. Nussenzveig Lopes; Yuxi Zheng
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 2, page 225-237
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- G.R. Baker and J.T. Beale, Vortex blob methods applied to interfacial motion. J. Comput. Phys.196 (2004) 233–258.
- R. Caflisch and O. Orellana, Long time existence for a slightly perturbed vortex sheet. Comm. Pure Appl. Math.39 (1986) 807–838.
- R. Caflisch and O. Orellana, Singularity solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal.20 (1989) 293–307.
- J.-Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Partial Differential Equations21 (1996) 1771–1779.
- A. Chorin and P. Bernard, Discretization of a vortex sheet with an example of roll-up. J. Comput. Phys.13 (1973) 423–429.
- J.-M. Delort, Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc.4 (1991) 553–586.
- R. DiPerna and A. Majda, Concentrations and regularizations for 2-D incompressible flow. Comm. Pure Appl. Math.XL (1987) 301–345.
- R. DiPerna and A. Majda, Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow. J. Am. Math. Soc.1 (1988) 59–95.
- J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane. Comm. Partial Differential Equations73 (1988) 215–224.
- D. Ebin, Ill-posedness of the Rayleigh-Taylor and Helmholtz problem for incompressible fluids. Comm. Partial Differential Equations73 (1988) 1265–1295.
- L.C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics 74 A.M.S., Providence, RI (1990).
- C. Greengard and E. Thomann, On DiPerna-Majda concentration sets for two-dimensional incompressible flow. Comm. Pure Appl. Math.41 (1988) 295–303.
- R. Krasny, Desingularization of periodic vortex sheet roll-up. J. Comput. Phys.65 (1986) 292–313.
- R. Krasny, Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech.184 (1987) 123–155.
- R. Krasny and M. Nitsche, The onset of chaos in vortex sheet flow. J. Fluid Mech.454 (2002) 47–69.
- G. Lebeau, Régularité du problème de Kelvin-Helmholtz pour l'équation d'Euler 2D. ESAIM: COCV8 (2002) 801–825.
- J.G. Liu and Z.P. Xin, Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data. Comm. Pure Appl. Math.XLVIII (1995) 611–628.
- M.C. Lopes Filho, H.J. Nussenzveig Lopes and Y.X. Zheng, Convergence of the vanishing viscosity approximation for superpositions of confined eddies. Commun. Math. Phys.201 (1999) 291–304.
- M.C. Lopes Filho, H.J. Nussenzveig Lopes and E. Tadmor, Approximate solutions of the incompressible Euler equations with no concentrations. Ann. I. H. Poincaré-An.17 (2000) 371–412.
- M.C. Lopes Filho, H.J. Nussenzveig Lopes and Z.P. Xin, Existence of vortex sheets with reflection symmetry in two space dimensions. Arch. Rational Mech. Anal.158 (2001) 235–257.
- M.C. Lopes Filho, H.J. Nussenzveig Lopes and M.O. Souza, On the equation satisfied by a steady Prandtl-Munk vortex sheet. Comm. Math. Sci.1 (2003) 68–73.
- A. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana U. Math J.42 (1993) 921–939.
- A. Majda, G. Majda and Y.X. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case. Physica D74 (1994) 268–300.
- M. Nitsche, M.A. Taylor and R. Krasny, Comparison of regularizations of vortex sheet motion, Proc. 2nd MIT Conf. Comput. Fluid and Solid Mech., K.J. Bathe Ed., Elsevier, Cambridge, MA (2003).
- W.R.C. Phillips and D.I. Pullin, On a generalization of Kaden's problem. J. Fluid Mech.104 (1981) 45–53.
- D.I. Pullin, On similarity flows containing two branched vortex sheets, in Mathematical Aspects of Vortex Dynamics, R. Caflisch Ed., SIAM (1989) 97–106.
- V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal.3 (1993) 343–401.
- S. Schochet, The weak vorticity formulation of the 2D Euler equations and concentration-cancellation. Comm. P.D.E.20 (1995) 1077–1104.
- S. Schochet, Point-vortex method for periodic weak solutions of the 2-D Euler equations. Comm. Pure Appl. Math.XLIX (1996) 911–965.
- A. Shnirelman, On the non-uniqueness of weak solutions of the Euler equations. Comm. Pure Appl. Math.L (1997) 1261–1286.
- P.L. Sulem, C. Sulem, C. Bardos and U. Frisch, Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability. Comm. Math. Phys.80 (1981) 485–516.
- G. Tryggvason, W. Dahn and K. Sbeih, Fine structure of rollup by viscous and inviscid simulation. J. Fluids Eng.-T ASME113 (1991) 31–36.
- I. Vecchi and S.J. Wu, On L1-vorticity for 2-D incompressible flow. Manuscripta Math.78 (1993) 403–412.
- M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. S. Ser. 432 (1999) 769–812.
- S.J. Wu, Recent progress in mathematical analysis of vortex sheets, in Proceedings of the ICM, Beijing (2002) Vol. III, 233–242.
- V. Yudovich, Non-stationary flow of an ideal incompressible liquid (in Russian), Zh. Vych. Mat.3 (1963) 1032–1066.
- V. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal, incompressible fluid. Math. Res. Lett.2 (1995) 27–38.