Construction of entropy solutions for one dimensional elastodynamics via time discretisation

Sophia Demoulini; David M. A. Stuart; Athanasios E. Tzavaras

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 6, page 711-731
  • ISSN: 0294-1449

How to cite

top

Demoulini, Sophia, Stuart, David M. A., and Tzavaras, Athanasios E.. "Construction of entropy solutions for one dimensional elastodynamics via time discretisation." Annales de l'I.H.P. Analyse non linéaire 17.6 (2000): 711-731. <http://eudml.org/doc/78506>.

@article{Demoulini2000,
author = {Demoulini, Sophia, Stuart, David M. A., Tzavaras, Athanasios E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {weak convergence; variational approximation scheme; one-dimensional elastodynamics; time discretisation; weak solution; entropy inequalities; positive spatial derivative; longitudinal motions},
language = {eng},
number = {6},
pages = {711-731},
publisher = {Gauthier-Villars},
title = {Construction of entropy solutions for one dimensional elastodynamics via time discretisation},
url = {http://eudml.org/doc/78506},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Demoulini, Sophia
AU - Stuart, David M. A.
AU - Tzavaras, Athanasios E.
TI - Construction of entropy solutions for one dimensional elastodynamics via time discretisation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 6
SP - 711
EP - 731
LA - eng
KW - weak convergence; variational approximation scheme; one-dimensional elastodynamics; time discretisation; weak solution; entropy inequalities; positive spatial derivative; longitudinal motions
UR - http://eudml.org/doc/78506
ER -

References

top
  1. [1] Ball J., Remarques sur l'existence et la régularité des solutions d'élastostatique non linéaire, in: Berestykci H., Brezis H. (Eds.), Recent Contributions of Nonlinear PDE, Pitman Research Notes in Mathematics50, Pitman, Boston, 1981, pp. 50- 62. Zbl0466.73012MR639745
  2. [2] Chen G.-Q., Frid H., Decay of entropy solutions of nonlinear conservation laws, Arch. Rational Mech. Anal.146 (1999) 95-127. Zbl0942.35031MR1718482
  3. [3] Dafermos C., Estimates for conservation laws with little viscosity, SIAM J. Math. Anal.18 (1987) 409-421. Zbl0655.35055MR876280
  4. [4] Demoulini S., Young measure solutions for nonlinear evolutionary systems of mixed type, Annales de l'I.H.P., Analyse Non Linéaire14 (1) (1997) 143-162. Zbl0871.35065MR1437192
  5. [5] Demoulini S., Weak solutions for a class of nonlinear systems of viscoelasticity, Arch. Rat. Mech. Analysis, to appear. Zbl0991.74021MR1808121
  6. [6] Demoulini S., Stuart D., Tzavaras A., A variational approximation scheme for three dimensional elastodynamics with polyconvex energy, preprint. Zbl0985.74024
  7. [7] DiPerna R., Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Analysis82 (1983) 27-70. Zbl0519.35054MR684413
  8. [8] Godlewski E., Raviart P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, 1996. Zbl0860.65075MR1410987
  9. [9] Hörmander L., Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
  10. [10] Kinderlehrer D., Perdregal P., Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal.23 (1992) 1-19. Zbl0757.49014MR1145159
  11. [11] Lax P, Shock waves and entropy, in: Zarantonello E.H. (Ed.), Contributions to Nonlinear Functional Analysis, New York, Academic Press, 1971, pp. 603-634. Zbl0268.35014MR393870
  12. [12] Lin P, Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics, Trans. Amer. Math. Soc.329 (1992) 377- 413. Zbl0761.35061MR1049615
  13. [13] Murat F, L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q &lt; 2, J. Math. Pures Appl.60 (1981) 309-322. Zbl0471.46020
  14. [14] Rieger M., Young-measure solutions for diffusion elasticity equations, preprint. 
  15. [ 15] Serre D., Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, preprint. 
  16. [16] Serre D., Shearer J., Convergence with physical viscosity for nonlinear elasticity, 1993, (unpublished manuscript). 
  17. [17] Shearer J., Global existence and compactness in Lp for the quasi-linear wave equation, Comm. Partial Diff. Eq.19 (1994) 1829-1877. Zbl0855.35078MR1301175
  18. [18] Tartar L., Compensated compactness and applications to partial differential quations, in: Knops Nonlinear Analysis and Mechanics, IV Heriot-Watt Symposium, Vol. IV, Pitman Research Notes in Mathematics, Pitman, Boston, 1979, pp. 136- 192. Zbl0437.35004MR584398
  19. [19] Tzavaras A., Materials with internal variables and relaxation to conservation laws, Arch. Rational Mech. Anal.146 (1999) 129-155. Zbl0973.74005MR1718478

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.