Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities
F. A. Lops; F Maddalena; S Solimini
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 6, page 639-673
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLops, F. A., Maddalena, F, and Solimini, S. "Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities." Annales de l'I.H.P. Analyse non linéaire 18.6 (2001): 639-673. <http://eudml.org/doc/78533>.
@article{Lops2001,
author = {Lops, F. A., Maddalena, F, Solimini, S},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {integral functional; free discontinuities; Dirichlet boundary value problems},
language = {eng},
number = {6},
pages = {639-673},
publisher = {Elsevier},
title = {Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities},
url = {http://eudml.org/doc/78533},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Lops, F. A.
AU - Maddalena, F
AU - Solimini, S
TI - Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 6
SP - 639
EP - 673
LA - eng
KW - integral functional; free discontinuities; Dirichlet boundary value problems
UR - http://eudml.org/doc/78533
ER -
References
top- [1] Ambrosio L., Compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital.3-B (1989) 857-881. Zbl0767.49001MR1032614
- [2] Ambrosio L., Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal.111 (1990) 291-322. Zbl0711.49064MR1068374
- [3] Ambrosio L., A new proof of the SBV compactness theorem, Calc. Var.3 (1995) 127-137. Zbl0837.49011MR1384840
- [4] Ambrosio L., Fusco N., Pallara D., Partial regularity of free discontinuity sets, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (4) (1997) 39-62. Zbl0896.49024MR1475772
- [5] Carriero M., Leaci A., Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal.15 (1990) 661-667. Zbl0713.49003MR1073957
- [6] Dal Maso G., Morel J.M., Solimini S., Une approche variationelle en traitement d'images: résultats d'existence et d'approximation, C. Rend. Acad. Sc. Paris, Série I308 (1989) 549-554. Zbl0682.49003MR999453
- [7] Dal Maso G., Morel J.M., Solimini S., A variational method in image segmentation: existence and approximation results, Acta Mat.168 (1992) 89-151. Zbl0772.49006MR1149865
- [8] David G., Semmes S., On the singular set of minimizers of Mumford–Shah functional, J. Math. Pures Appl.803 (1989) 549-554.
- [9] David G., Semmes S., Uniform rectifiability and singular set, Annales de l'I.H.P.13 (4) (1996) 383-443. Zbl0908.49030MR1404317
- [10] De Giorgi E., Ambrosio L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. s. 882 (1988) 199-210. Zbl0715.49014MR1152641
- [11] De Giorgi E., Carriero M., Leaci A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal.108 (1989) 195-218. Zbl0682.49002MR1012174
- [12] Dibos F., Uniform rectifiability of image segmentation obtained by variational methods, J. Math. Pures Appl.803 (1989) 549-554.
- [13] Dibos F., Koepfler G., Propriété de régularité des contours d'une image segmentée, C. Rend. Acad. Sc. Paris, Série I313 (1991) 573-578. Zbl0779.49004MR1133487
- [14] Federer H., Geometric Measure Theory, Springer, Boston, 1969. Zbl0874.49001MR257325
- [15] Kinderlehrer D., Stampacchia G., Variational Inequalities and Applications, Academic Press, Boston, 1980. Zbl0457.35001MR567696
- [16] Maddalena F., Solimini S., Concentration and flatness properties of the singular set of bisected balls, Ann. Scuola Norm. Sup. Pisa (to appear). Zbl1170.49307MR1896080
- [17] Maddalena F., Solimini S., Lower semicontinuity properties for functionals with free discontinuities (to appear). Zbl1013.49010MR1860049
- [18] Morel J.M., Solimini S., Variational Methods in Image Segmentation, Birkhäuser, Boston, 1994. Zbl0827.68111MR1321598
- [19] Morrey C.B., Multiple integrals in the calculus of variations, Springer, Heidelberg, 1966. Zbl0142.38701MR202511
- [20] Mumford D., Shah S., Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.XLII-4 (1989). Zbl0691.49036MR997568
- [21] Solimini S., Simplified excision techniques for Free Discontinuity Problems in several variables, J. Funct. Anal.151 (1) (1997) 1-34. Zbl0891.49007MR1487768
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.