Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities

F. A. Lops; F Maddalena; S Solimini

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 6, page 639-673
  • ISSN: 0294-1449

How to cite

top

Lops, F. A., Maddalena, F, and Solimini, S. "Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities." Annales de l'I.H.P. Analyse non linéaire 18.6 (2001): 639-673. <http://eudml.org/doc/78533>.

@article{Lops2001,
author = {Lops, F. A., Maddalena, F, Solimini, S},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {integral functional; free discontinuities; Dirichlet boundary value problems},
language = {eng},
number = {6},
pages = {639-673},
publisher = {Elsevier},
title = {Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities},
url = {http://eudml.org/doc/78533},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Lops, F. A.
AU - Maddalena, F
AU - Solimini, S
TI - Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 6
SP - 639
EP - 673
LA - eng
KW - integral functional; free discontinuities; Dirichlet boundary value problems
UR - http://eudml.org/doc/78533
ER -

References

top
  1. [1] Ambrosio L., Compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital.3-B (1989) 857-881. Zbl0767.49001MR1032614
  2. [2] Ambrosio L., Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal.111 (1990) 291-322. Zbl0711.49064MR1068374
  3. [3] Ambrosio L., A new proof of the SBV compactness theorem, Calc. Var.3 (1995) 127-137. Zbl0837.49011MR1384840
  4. [4] Ambrosio L., Fusco N., Pallara D., Partial regularity of free discontinuity sets, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (4) (1997) 39-62. Zbl0896.49024MR1475772
  5. [5] Carriero M., Leaci A., Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal.15 (1990) 661-667. Zbl0713.49003MR1073957
  6. [6] Dal Maso G., Morel J.M., Solimini S., Une approche variationelle en traitement d'images: résultats d'existence et d'approximation, C. Rend. Acad. Sc. Paris, Série I308 (1989) 549-554. Zbl0682.49003MR999453
  7. [7] Dal Maso G., Morel J.M., Solimini S., A variational method in image segmentation: existence and approximation results, Acta Mat.168 (1992) 89-151. Zbl0772.49006MR1149865
  8. [8] David G., Semmes S., On the singular set of minimizers of Mumford–Shah functional, J. Math. Pures Appl.803 (1989) 549-554. 
  9. [9] David G., Semmes S., Uniform rectifiability and singular set, Annales de l'I.H.P.13 (4) (1996) 383-443. Zbl0908.49030MR1404317
  10. [10] De Giorgi E., Ambrosio L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. s. 882 (1988) 199-210. Zbl0715.49014MR1152641
  11. [11] De Giorgi E., Carriero M., Leaci A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal.108 (1989) 195-218. Zbl0682.49002MR1012174
  12. [12] Dibos F., Uniform rectifiability of image segmentation obtained by variational methods, J. Math. Pures Appl.803 (1989) 549-554. 
  13. [13] Dibos F., Koepfler G., Propriété de régularité des contours d'une image segmentée, C. Rend. Acad. Sc. Paris, Série I313 (1991) 573-578. Zbl0779.49004MR1133487
  14. [14] Federer H., Geometric Measure Theory, Springer, Boston, 1969. Zbl0874.49001MR257325
  15. [15] Kinderlehrer D., Stampacchia G., Variational Inequalities and Applications, Academic Press, Boston, 1980. Zbl0457.35001MR567696
  16. [16] Maddalena F., Solimini S., Concentration and flatness properties of the singular set of bisected balls, Ann. Scuola Norm. Sup. Pisa (to appear). Zbl1170.49307MR1896080
  17. [17] Maddalena F., Solimini S., Lower semicontinuity properties for functionals with free discontinuities (to appear). Zbl1013.49010MR1860049
  18. [18] Morel J.M., Solimini S., Variational Methods in Image Segmentation, Birkhäuser, Boston, 1994. Zbl0827.68111MR1321598
  19. [19] Morrey C.B., Multiple integrals in the calculus of variations, Springer, Heidelberg, 1966. Zbl0142.38701MR202511
  20. [20] Mumford D., Shah S., Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.XLII-4 (1989). Zbl0691.49036MR997568
  21. [21] Solimini S., Simplified excision techniques for Free Discontinuity Problems in several variables, J. Funct. Anal.151 (1) (1997) 1-34. Zbl0891.49007MR1487768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.