Uniform rectifiability and singular sets
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 4, page 383-443
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDavid, Guy, and Semmes, Stephen. "Uniform rectifiability and singular sets." Annales de l'I.H.P. Analyse non linéaire 13.4 (1996): 383-443. <http://eudml.org/doc/78387>.
@article{David1996,
author = {David, Guy, Semmes, Stephen},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {uniform rectifiability; Mumford-Shah functional; singular sets},
language = {eng},
number = {4},
pages = {383-443},
publisher = {Gauthier-Villars},
title = {Uniform rectifiability and singular sets},
url = {http://eudml.org/doc/78387},
volume = {13},
year = {1996},
}
TY - JOUR
AU - David, Guy
AU - Semmes, Stephen
TI - Uniform rectifiability and singular sets
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 383
EP - 443
LA - eng
KW - uniform rectifiability; Mumford-Shah functional; singular sets
UR - http://eudml.org/doc/78387
ER -
References
top- [Am] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal., Vol. 111, 1990, pp. 291-322. Zbl0711.49064MR1068374
- [CL1] M. Carriero and A. Leaci, Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Analysis, Theory, Methods & Applications, Vol. 15, 1990, pp. 661-677. Zbl0713.49003
- [CL2] M. Carriero and A. Leaci, Sk-Valued Maps minimizing the Lp norm of the gradient with free discontinuities, Ann. Sc. Norm. Sup. Pisa, Vol. 18, 1991, pp. 321-352. Zbl0753.49018MR1145314
- [DCL] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal., Vol. 108, 1989, pp. 195-218. Zbl0682.49002MR1012174
- [Da] G. David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Revista Matematica Iberoamericana, Vol. 4, 1, 1988, pp. 73-114. Zbl0696.42011MR1009120
- [DJ] G. David and D. Jerison, Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals, Indiana U. Math. Journal., Vol. 39, 3, 1990, pp. 831-845. Zbl0758.42008MR1078740
- [DMS] G. Dal Maso, J.-M. Morel and S. Solimini, A variational method in image segmentation: Existence and approximation results, Acta Math., Vol. 168, 1992, pp. 89-151. Zbl0772.49006MR1149865
- [DS1] G. David and S. Semmes, Singular Integrals and Rectifiable Sets in Rn: au-delà des graphes lipschitziens, Astérisque 193, Société Mathématique de France, 1991. Zbl0743.49018
- [DS2] G. David and S. Semmes, Quantitative rectifiability and Lipschitz mappings, Transactions A.M.S., Vol. 337, 1993, pp. 855-889. Zbl0792.49029MR1132876
- [DS3] G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Mathematical surveys and monographs, Vol. 38, 1993, American Mathematical Society. Zbl0832.42008MR1251061
- [DS4] G. David and S. Semmes, On the singular sets of minimizers of the Mumford-Shah functional, to appear J. Math. Pures Appl. Zbl0853.49010
- [DS5] G. David and S. Semmes, On a variational problem from image processing, Proceedings of the conference in Honor of Jean-Pierre Kahane, Journ. of Fourier Analysis and Applications, 1995, pp. 161-187. Zbl0887.49002MR1364884
- [Fa] K. Falconer, The geometry of fractal sets, Cambridge University Press, 1984. Zbl0587.28004MR867284
- [Fe] H. Federer, Geometric Measure Theory, Grundlehren der Mathematishen Wissenschaften 153, Springer-Verlag1963. Zbl0176.00801
- [Ga] J. Garnett, Bounded Analytic Functions, Academic Press, 1981. Zbl0469.30024MR628971
- [Gi] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. Zbl0545.49018MR775682
- [GMT] H. Gonzales, U. Massari and I. Tamanini, Boundaries of Prescribed Mean Curvature, Rend. Mat. Acc. Lincei s. 9, Vol. 4, 1993, pp. 197-206. Zbl0824.49037MR1250498
- [Hr] T. Hrycak, Ph.D. thesis, Yale university.
- [Je] J.L. Journé, Calderón-Zygmund Operators, Pseudodifferential Operators, and the Cauchy Integral of Calderón, Lecture Notes. in Math., Vol. 994, 1983, Springer-Verlag. Zbl0508.42021MR706075
- [Js] P. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana, Vol. 4, 1988, pp. 115-122. Zbl0782.26007MR1009121
- [Ma] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, to appear, Cambridge Studies in Advanced Math. , Cambridge Univ. Press. Zbl0819.28004MR1333890
- [MoS] J.-M. Morel and S. Solimini, Variational Methods in Image Segmentation, Progress in Nonlinear differential equations and their applications, Vol. 14, Birkhauser, 1995. Zbl0827.68111MR1321598
- [MuS] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 577-685. Zbl0691.49036MR997568
- [Se1] S. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc., Vol. 311, 2, 1989, pp. 501-513. Zbl0675.42015MR948198
- [Se2] S. Semmes, Analysis vs. geometry on a class of rectifiable hypersurfaces in Rn, Indiana Math. J., Vol. 39, 1990, pp. 1005-1035. Zbl0796.42014MR1087183
- [Se3] S. Semmes, Hypersurfaces in Rn whose unit normal has small BMO norm, Proc. Amer. Math. Soc., Vol. 112, 1991, pp. 403-412. Zbl0733.42014MR1065093
- [St] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press1970. Zbl0207.13501MR290095
- [VI] N. Varopoulos, BMO functions and the ∂ equation, Pacific J. Math., Vol. 71, 1977, pp. 221-273. Zbl0371.35035MR508035
- [V2] N. Varopoulos, A remark on BMO and bounded harmonic functions, Pacific J. Math., Vol. 73, 1977, pp. 257-259. Zbl0382.31004MR508036
Citations in EuDML Documents
top- Séverine Rigot, Big pieces of -graphs for minimizers of the Mumford-Shah functional
- G. David, S. Semmes, Surfaces quasiminimales de codimension 1 et domaines de John
- F. A. Lops, F Maddalena, S Solimini, Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities
- Francesco Maddalena, Sergio Solimini, Concentration and flatness properties of the singular set of bisected balls
- Séverine Rigot, Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme
- Jean-Michel Morel, The Mumford-Shah conjecture in image processing
- Guy David, The local regularity of soap films after Jean Taylor
- Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.