Monotonicity and separation for the Mumford–Shah problem
Guy David; Jean-Christophe Léger
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 5, page 631-682
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Ambrosio L., Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990) 291-322. Zbl0711.49064MR1068374
- [2] Ambrosio L., Pallara D., Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 1-38. Zbl0896.49023MR1475771
- [3] Ambrosio L., Fusco N., Pallara D., Partial regularity of free discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 39-62. Zbl0896.49024MR1475772
- [4] Bonnet A., On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Analyse Non Linéaire13 (4) (1996) 485-528. Zbl0883.49004MR1404319
- [5] Bonnet A., David G., Cracktip is a global Mumford–Shah minimizer, Astérisque, 274, SMF, 2001. Zbl1014.49009MR1864620
- [6] Dal Maso G., Morel J.-M., Solimini S., A variational method in image segmentation: Existence and approximation results, Acta Math.168 (1992) 89-151. Zbl0772.49006MR1149865
- [7] David G., C1 arcs for minimizers of the Mumford–Shah functional, SIAM. J. Appl. Math.56 (3) (1996) 783-888. Zbl0870.49020MR1389754
- [8] David G., Semmes S., Analysis of and on Uniformly Rectifiable Sets, AMS Series of Mathematical Surveys and Monographs, 38, 1993. Zbl0832.42008MR1251061
- [9] David G., Semmes S., On the singular sets of minimizers of the Mumford–Shah functional, J. Math. Pures Appl.75 (1996) 299-342. Zbl0853.49010MR1411155
- [10] De Giorgi E., Problemi con discontinuità libera, Int. Symp. Renato Caccioppoli, Napoli, Sept. 20–22, 1989, Ricerche Mat. (suppl.)40 (1991) 203-214. Zbl0829.49029
- [11] De Giorgi E., Carriero M., Leaci A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989) 195-218. Zbl0682.49002MR1012174
- [12] Falconer K., The Geometry of Fractal Sets, Cambridge University Press, 1984. Zbl0587.28004MR867284
- [13] Federer H., Geometric Measure Theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer-Verlag, 1969. Zbl0176.00801MR257325
- [14] Hardy G., Littlewood J.E., Pólya G., Inequalities, Cambridge University Press, 1952. MR46395JFM60.0169.01
- [15] Léger J.-C., Flatness and finiteness in the Mumford–Shah problem, J. Math. Pures Appl. (9)78 (4) (1999) 431-459. Zbl0942.49030MR1696359
- [16] Lops F.A., Maddalena F., Solimini S., Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire18 (2001) 639-673. Zbl1001.49018MR1862638
- [17] Maddalena F., Solimini S., Blow-up techniques and regularity near the boundary for free discontinuity problems, Advanced Nonlinear Studies1 (2) (2001). Zbl1044.49026MR1868648
- [18] Mattila P., Geometry of Sets and Measures in Euclidean Space, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [19] Mumford D., Shah J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.42 (1989) 577-685. Zbl0691.49036MR997568
- [20] Newman M.H.A., Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961. Zbl0123.39301MR132534