Monotonicity and separation for the Mumford–Shah problem

Guy David; Jean-Christophe Léger

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 5, page 631-682
  • ISSN: 0294-1449

How to cite

top

David, Guy, and Léger, Jean-Christophe. "Monotonicity and separation for the Mumford–Shah problem." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 631-682. <http://eudml.org/doc/78557>.

@article{David2002,
author = {David, Guy, Léger, Jean-Christophe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Mumford-Shah functional; global minimizers; monotonicity; boundary regularity},
language = {eng},
number = {5},
pages = {631-682},
publisher = {Elsevier},
title = {Monotonicity and separation for the Mumford–Shah problem},
url = {http://eudml.org/doc/78557},
volume = {19},
year = {2002},
}

TY - JOUR
AU - David, Guy
AU - Léger, Jean-Christophe
TI - Monotonicity and separation for the Mumford–Shah problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 631
EP - 682
LA - eng
KW - Mumford-Shah functional; global minimizers; monotonicity; boundary regularity
UR - http://eudml.org/doc/78557
ER -

References

top
  1. [1] Ambrosio L., Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990) 291-322. Zbl0711.49064MR1068374
  2. [2] Ambrosio L., Pallara D., Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 1-38. Zbl0896.49023MR1475771
  3. [3] Ambrosio L., Fusco N., Pallara D., Partial regularity of free discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 39-62. Zbl0896.49024MR1475772
  4. [4] Bonnet A., On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Analyse Non Linéaire13 (4) (1996) 485-528. Zbl0883.49004MR1404319
  5. [5] Bonnet A., David G., Cracktip is a global Mumford–Shah minimizer, Astérisque, 274, SMF, 2001. Zbl1014.49009MR1864620
  6. [6] Dal Maso G., Morel J.-M., Solimini S., A variational method in image segmentation: Existence and approximation results, Acta Math.168 (1992) 89-151. Zbl0772.49006MR1149865
  7. [7] David G., C1 arcs for minimizers of the Mumford–Shah functional, SIAM. J. Appl. Math.56 (3) (1996) 783-888. Zbl0870.49020MR1389754
  8. [8] David G., Semmes S., Analysis of and on Uniformly Rectifiable Sets, AMS Series of Mathematical Surveys and Monographs, 38, 1993. Zbl0832.42008MR1251061
  9. [9] David G., Semmes S., On the singular sets of minimizers of the Mumford–Shah functional, J. Math. Pures Appl.75 (1996) 299-342. Zbl0853.49010MR1411155
  10. [10] De Giorgi E., Problemi con discontinuità libera, Int. Symp. Renato Caccioppoli, Napoli, Sept. 20–22, 1989, Ricerche Mat. (suppl.)40 (1991) 203-214. Zbl0829.49029
  11. [11] De Giorgi E., Carriero M., Leaci A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989) 195-218. Zbl0682.49002MR1012174
  12. [12] Falconer K., The Geometry of Fractal Sets, Cambridge University Press, 1984. Zbl0587.28004MR867284
  13. [13] Federer H., Geometric Measure Theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer-Verlag, 1969. Zbl0176.00801MR257325
  14. [14] Hardy G., Littlewood J.E., Pólya G., Inequalities, Cambridge University Press, 1952. MR46395JFM60.0169.01
  15. [15] Léger J.-C., Flatness and finiteness in the Mumford–Shah problem, J. Math. Pures Appl. (9)78 (4) (1999) 431-459. Zbl0942.49030MR1696359
  16. [16] Lops F.A., Maddalena F., Solimini S., Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire18 (2001) 639-673. Zbl1001.49018MR1862638
  17. [17] Maddalena F., Solimini S., Blow-up techniques and regularity near the boundary for free discontinuity problems, Advanced Nonlinear Studies1 (2) (2001). Zbl1044.49026MR1868648
  18. [18] Mattila P., Geometry of Sets and Measures in Euclidean Space, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
  19. [19] Mumford D., Shah J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.42 (1989) 577-685. Zbl0691.49036MR997568
  20. [20] Newman M.H.A., Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961. Zbl0123.39301MR132534

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.