On the support of solutions to the generalized KdV equation

Carlos E. Kenig; Gustavo Ponce; Luis Vega

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 2, page 191-208
  • ISSN: 0294-1449

How to cite

top

Kenig, Carlos E., Ponce, Gustavo, and Vega, Luis. "On the support of solutions to the generalized KdV equation." Annales de l'I.H.P. Analyse non linéaire 19.2 (2002): 191-208. <http://eudml.org/doc/78543>.

@article{Kenig2002,
author = {Kenig, Carlos E., Ponce, Gustavo, Vega, Luis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Korteweg-de Vries equation; compact support; Carleman estimates},
language = {eng},
number = {2},
pages = {191-208},
publisher = {Elsevier},
title = {On the support of solutions to the generalized KdV equation},
url = {http://eudml.org/doc/78543},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Kenig, Carlos E.
AU - Ponce, Gustavo
AU - Vega, Luis
TI - On the support of solutions to the generalized KdV equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 2
SP - 191
EP - 208
LA - eng
KW - Korteweg-de Vries equation; compact support; Carleman estimates
UR - http://eudml.org/doc/78543
ER -

References

top
  1. [1] Bourgain J., On the compactness of the support of solutions of dispersive equations, Internat. Math. Res. Notices9 (1997) 437-447. Zbl0882.35106MR1443322
  2. [2] Ginibre J., Tsutsum Y., Uniqueness of solutions for the generalized Korteweg–de Vries equation, SIAM J. Math. Anal.20 (1989) 1388-1425. Zbl0702.35224MR1019307
  3. [3] Kato T., On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math.8 (1983) 93-128. Zbl0549.34001MR759907
  4. [4] Kenig C.E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana University Math. J.40 (1991) 33-69. Zbl0738.35022MR1101221
  5. [5] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math.46 (1993) 527-620. Zbl0808.35128MR1211741
  6. [6] Kenig C.E., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc.122 (1994) 157-166. Zbl0810.35122MR1195480
  7. [7] Kenig C.E., Ruiz A., Sogge C., Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J.55 (1987) 329-347. Zbl0644.35012MR894584
  8. [8] Kenig C.E., Sogge C., A note on unique continuation for Schrödinger's operator, Proc. Amer. Math. Soc.103 (1988) 543-546. Zbl0661.35056MR943081
  9. [9] Saut J.-C., Scheurer B., Unique continuation for some evolution equations, J. Differential Equations66 (1987) 118-139. Zbl0631.35044MR871574
  10. [10] Stein E.M., Harmonic Analysis, Princeton University Press, 1993. Zbl0821.42001MR1232192
  11. [11] Tarama S., Analytic solutions of the Korteweg–de Vries equation, preprint. 
  12. [12] Zhang B.-Y., Unique continuation for the Korteweg–de Vries equation, SIAM J. Math. Anal.23 (1992) 55-71. Zbl0746.35045MR1145162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.