A new method for measuring the splitting of invariant manifolds

David Sauzin

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 2, page 159-221
  • ISSN: 0012-9593

How to cite

top

Sauzin, David. "A new method for measuring the splitting of invariant manifolds." Annales scientifiques de l'École Normale Supérieure 34.2 (2001): 159-221. <http://eudml.org/doc/82541>.

@article{Sauzin2001,
author = {Sauzin, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Arnold diffusion; separatrix splitting; homoclinic; Hamiltonian system},
language = {eng},
number = {2},
pages = {159-221},
publisher = {Elsevier},
title = {A new method for measuring the splitting of invariant manifolds},
url = {http://eudml.org/doc/82541},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Sauzin, David
TI - A new method for measuring the splitting of invariant manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 2
SP - 159
EP - 221
LA - eng
KW - Arnold diffusion; separatrix splitting; homoclinic; Hamiltonian system
UR - http://eudml.org/doc/82541
ER -

References

top
  1. [1] Arnol'd V.I, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR156 (1964) 9-12, (in Russian). [English translation: Soviet Math. Dokl.5 (1964) 581–585]. Zbl0135.42602
  2. [2] Bott R, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc.7 (2) (1982) 331-358. Zbl0505.58001MR663786
  3. [3] Bruno A.D, Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin, 1989. Zbl0674.34002MR993771
  4. [4] Delshams A, Gelfreich V.G, Jorba À, Seara T.M, Exponentially small splitting of separatrices under fast quasi-periodic forcing, Comm. Math. Phys.189 (1997) 35-71. Zbl0897.34042MR1478530
  5. [5] Delshams A, Gutiérrez P, Homoclinic orbits to invariant tori in Hamiltonian systems, in: Jones C, Wiggins S, Khibnik A, Dumortier F, Terman D (Eds.), Multiple-Time-Scale Dynamical Systems, IMA Vol. in Math. and its Appl., Springer-Verlag, Berlin, 1998. Zbl1140.37355MR1846571
  6. [6] Delshams A, Seara T.M, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys.150 (1992) 433-463. Zbl0765.70016MR1204314
  7. [7] Delshams A, Seara T.M, Splitting of separatrices in Hamiltonian systems with one and half degrees of freedom, Math. Phys. Elec. J.3 (1997), paper 4. Zbl0891.58035MR1474213
  8. [8] Écalle J, Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture, in: Schlomiuk D (Ed.), Bifurcations and Periodic Orbits of Vector Fields, Kluwer Academic, Dordrecht, 1993, pp. 75-184. Zbl0814.32008MR1258519
  9. [9] Eliasson L.H, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Bras. Mat.25 (1) (1994) 57-76. Zbl0799.58026MR1274762
  10. [10] Fruchard A, Schäfke R, Exponentially small splitting of separatrices for difference equations with small step size, J. Dynam. Control Syst.2 (2) (1996) 193-238. Zbl0940.39001MR1388695
  11. [11] Gallavotti G, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable systems. A review, Rev. Math. Phys.6 (3) (1994) 343-411. Zbl0798.58036MR1305589
  12. [12] Gallavotti G, Gentile G, Mastropietro V, Melnikov's approximation dominance. Some examples, Rev. Math. Phys.11 (4) (1999) 451-461. Zbl0983.37074MR1682687
  13. [13] Gelfreich V.G, Melnikov method and exponentially small splitting of separatrices, Physica D101 (1997) 227-248. Zbl0896.70011MR1433078
  14. [14] Graff S.M, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations15 (1974) 1-69. Zbl0257.34048MR365626
  15. [15] Hirsch M.W, Pugh C.C, Shub M, Invariant Manifolds, Lect. Notes in Math., 583, Springer-Verlag, Berlin, 1977. Zbl0355.58009MR501173
  16. [16] Lazutkin V.F, Splitting of separatrices for the Chirikov's standard map, Preprint VINITI 6372-84, 1984, (in Russian). MR1993024
  17. [17] Lochak P, Effective speed of Arnol'd diffusion and small denominators, Phys. Lett. A143 (1990) 39-42. MR1034234
  18. [18] Lochak P, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys47 (1992) 57-133. Zbl0795.58042MR1209145
  19. [19] Lochak P, Hamiltonian perturbation theory: periodic orbits, resonances and intermittency, Nonlinearity6 (1993) 885-904. Zbl0794.70006MR1251248
  20. [20] Lochak P, Tores invariants à torsion évanescente dans les systèmes hamiltoniens proches de l'intégrable, C.R. Acad. Sci. Paris, Série I327 (1998) 833-836. Zbl0917.58011MR1663746
  21. [21] Lochak P, Marco J.-P, Sauzin D, On the splitting of the invariant manifolds in multidimensional near-integrable Hamiltonian systems, Prépublication 220 de l'Institut de mathématiques de Jussieu, 1999. 
  22. [22] Poincaré H, Les méthodes nouvelles de la mécanique céleste, Vol. 2, Gauthier-Villars, Paris, 1893. Zbl25.1847.03JFM25.1847.03
  23. [23] Popov G, Invariant tori, effective stability and quasimodes with exponentially small error terms, Preprint, 1999. 
  24. [24] Pöschel J, Nekhoroshev estimates for quasi-convex Hamiltonian sytems, Math. Z.213 (1993) 187-216. Zbl0857.70009MR1221713
  25. [25] Rudnev M, Wiggins S, Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems, Physica D114 (1998) 3-80. Zbl0941.37021MR1612043
  26. [26] Sauzin D, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé, Ann. Inst. Fourier45 (1995) 453-511. Zbl0826.30004MR1343559
  27. [27] Simó C, Averaging under fast quasiperiodic forcing, in: Seimenis J (Ed.), Hamiltonian Mechanics: Integrability and Chaotic Behaviour, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum Press, New York, 1994, pp. 13-34. MR1316666
  28. [28] Treschev D.V, A mechanism for the destruction of resonance tori of Hamiltonian systems, Math. USSR-Sbornik68 (1) (1991) 181-203. Zbl0737.58025MR1025685
  29. [29] Treschev D.V, Hyperbolic tori and asymptotic surfaces in Hamiltonian systems, Russian J. Math. Phys.2 (1) (1994) 93-110. Zbl0910.58034MR1297943
  30. [30] Yoccoz J.-C, Introduction to hyperbolic dynamics, in: Branner B, Hjorth P (Eds.), Real and Complex Dynamical Systems, NATO Adv. Sci. Inst. Ser. C Math. and Phys. Sciences, 464, Kluwer Academic, Dordrecht, 1995, pp. 265-291. Zbl0834.54023MR1351526

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.