Periodic orbits close to elliptic tori and applications to the three-body problem
Massimiliano Berti[1]; Luca Biasco[2]; Enrico Valdinoci[3]
- [1] Settore di Analisi Funzionale e Applicazioni Scuola Internazionale Superiore di Studi Avanzati (SISSA) Via Beirut 2-4 34014 Trieste (Italy)
- [2] Dipartimento di Matematica Università “Roma Tre”, Largo S. L. Murialdo 1 00146 Roma (Italy)
- [3] Dipartimento di Matematica Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 1, page 87-138
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Am] A. Ambrosetti, Critical points and nonlinear variational problems, Mm. Soc. Math. Fr., Nouv. Sr. 49, 1992. Zbl0766.49006MR1164129
- [ACE] A. Ambrosetti – V. Coti-Zelati – I. Ekeland, Symmetry breaking in Hamiltonian systems, J. Differential Equation 67 (1987), 165-184. Zbl0606.58043MR879691
- [AB] A. Ambrosetti – M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approac, Ann. Inst. H. Poincaré - Analyse Non Linéaire 15, n.2 (1998), 233-252. Zbl1004.37043MR1614571
- [A] V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspekhi Mat. Nauk 18 (1963), 91-192. Zbl0135.42701MR170705
- [BK] D. Bernstein – A. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians, Invent. Math. 88 (1987), 225-241. Zbl0642.58040MR880950
- [BBB] M. Berti – L. Biasco – P. Bolle, Drift in phase space, a new variational mechanism with optimal diffusion time, J. Math. Pures Appl. 82 (2003), 613-664. Zbl1025.37037MR1996776
- [BB] M. Berti – P. Bolle, A functional analysis approach to Arnold Diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 395-450. Zbl1087.37048MR1912262
- [BCV] L. Biasco – L. Chierchia – E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem, Arch. Ration. Mech. Anal. 170 (2003), 91-135. Zbl1036.70006MR2017886
- [B] G. D. Birkhoff, Une generalization á -dimensions du dernier théorème de géometrié de Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 192 (1931), 196-198. Zbl0001.17402
- [BL] G. D. Birkhoff – D. C. Lewis, On the periodic motions near a given periodic motion of a dynamical system, Ann. Mat. Pura Appl., IV. Ser. 12 (1933), 117-133. Zbl0007.37104MR1553217
- [Bo] J. Bourgain, On Melnikov’s persistency problem, Math. Res. Lett. 4 (1997), 445-458. Zbl0897.58020MR1470416
- [BHS] H. W. Broer – G. B. Huitema – M. B. Sevriuk, “Quasi periodic motions in families of dynamical systems”, Lecture Notes in Math. 1645, Springer, 1996. Zbl0870.58087MR1484969
- [CZ] C. Conley – E. Zehnder, “An index theory for periodic solutions of a Hamiltonian system”, Lecture Notes in Mathematics 1007, Springer, 1983, 132-145. Zbl0528.34043MR730268
- [CZ1] C. Conley – E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. 73 (1983), 33-49. Zbl0516.58017MR707347
- [E] L. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), 115-147. Zbl0685.58024MR1001032
- [J] W. H. Jefferys, Periodic orbits in the three-dimensional three-body problem, Astronom. J. 71 (1966), 566-567. MR192693
- [JM] W. H. Jefferys – J. Moser, Quasi-periodic solutions for the three-body problem, Astronom. J. 71 (1966), 568-578. Zbl0177.52903MR207375
- [JV] Á. Jorba – J. Villanueva, On the Normal Behaviour of Partially Elliptic Lower Dimensional Tori of Hamiltonian Systems, Nonlinearity 10 (1997), 783-822. Zbl0924.58025MR1457746
- [K] S. B. Kuksin, Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation, Mat. Sb. (N.S.) 136 (178) (1988), 396-412, 431; translation in Math. USSR-Sb. 64 (1989), 397-413. Zbl0657.58033MR959490
- [LR] J. Laskar – P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom. 62 (1995), 193-217. Zbl0837.70008MR1364477
- [L] D. C. Lewis, Sulle oscillazioni periodiche di un sistema dinamico, Atti Accad. Naz. Rend. Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (1934), 234-237. Zbl0009.08903
- [M] V. K. Melnikov, On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function, Dokl. Akad. Nauk SSSR 165 (1965), 1245-1248. Zbl0143.11801MR201753
- [Mo] J. Moser, “Proof of a generalized form of a fixed point Theorem due to G. D. Birkhoff”, In: Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNP, Rio de Janeiro, 1976), 464-494. Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977. Zbl0358.58009MR494305
- [P] H. Poincaré, “Les Méthodes nouvelles de la Mécanique Céleste”, Gauthier Villars, Paris, 1892. Zbl25.1847.03JFM30.0834.08
- [Pö] J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), 653-696. Zbl0542.58015MR668410
- [Pö1] J. Pöschel, On elliptic lower dimensional tori in Hamiltonian system, Math. Z. 202 (1989), 559-608. Zbl0662.58037MR1022821
- [Pö2] J. Pöschel, A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 119-148. Zbl0870.34060MR1401420
- [R] P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions, Celestial Mech. Dynam. Astronom. 62 (1995), 219-261. Zbl0837.70009MR1364478
- [W] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), 479-528. Zbl0708.35087MR1040892
- [XY] J. Xu – J. You, Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition, J. Math. Pures Appl. 80 (2001), 1045-1067. Zbl1031.37053MR1876763