Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano Berti[1]; Luca Biasco[2]; Enrico Valdinoci[3]

  • [1] Settore di Analisi Funzionale e Applicazioni Scuola Internazionale Superiore di Studi Avanzati (SISSA) Via Beirut 2-4 34014 Trieste (Italy)
  • [2] Dipartimento di Matematica Università “Roma Tre”, Largo S. L. Murialdo 1 00146 Roma (Italy)
  • [3] Dipartimento di Matematica Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 1, page 87-138
  • ISSN: 0391-173X

Abstract

top
We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses of the “planets”. The proofs are based on averaging theory, KAM theory and variational methods

How to cite

top

Berti, Massimiliano, Biasco, Luca, and Valdinoci, Enrico. "Periodic orbits close to elliptic tori and applications to the three-body problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 87-138. <http://eudml.org/doc/84530>.

@article{Berti2004,
abstract = {We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses of the “planets”. The proofs are based on averaging theory, KAM theory and variational methods},
affiliation = {Settore di Analisi Funzionale e Applicazioni Scuola Internazionale Superiore di Studi Avanzati (SISSA) Via Beirut 2-4 34014 Trieste (Italy); Dipartimento di Matematica Università “Roma Tre”, Largo S. L. Murialdo 1 00146 Roma (Italy); Dipartimento di Matematica Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy)},
author = {Berti, Massimiliano, Biasco, Luca, Valdinoci, Enrico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {87-138},
publisher = {Scuola Normale Superiore, Pisa},
title = {Periodic orbits close to elliptic tori and applications to the three-body problem},
url = {http://eudml.org/doc/84530},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Berti, Massimiliano
AU - Biasco, Luca
AU - Valdinoci, Enrico
TI - Periodic orbits close to elliptic tori and applications to the three-body problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 87
EP - 138
AB - We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses of the “planets”. The proofs are based on averaging theory, KAM theory and variational methods
LA - eng
UR - http://eudml.org/doc/84530
ER -

References

top
  1. [Am] A. Ambrosetti, Critical points and nonlinear variational problems, Mm. Soc. Math. Fr., Nouv. Sr. 49, 1992. Zbl0766.49006MR1164129
  2. [ACE] A. Ambrosetti – V. Coti-Zelati – I. Ekeland, Symmetry breaking in Hamiltonian systems, J. Differential Equation 67 (1987), 165-184. Zbl0606.58043MR879691
  3. [AB] A. Ambrosetti – M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approac, Ann. Inst. H. Poincaré - Analyse Non Linéaire 15, n.2 (1998), 233-252. Zbl1004.37043MR1614571
  4. [A] V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspekhi Mat. Nauk 18 (1963), 91-192. Zbl0135.42701MR170705
  5. [BK] D. Bernstein – A. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians, Invent. Math. 88 (1987), 225-241. Zbl0642.58040MR880950
  6. [BBB] M. Berti – L. Biasco – P. Bolle, Drift in phase space, a new variational mechanism with optimal diffusion time, J. Math. Pures Appl. 82 (2003), 613-664. Zbl1025.37037MR1996776
  7. [BB] M. Berti – P. Bolle, A functional analysis approach to Arnold Diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 395-450. Zbl1087.37048MR1912262
  8. [BCV] L. Biasco – L. Chierchia – E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem, Arch. Ration. Mech. Anal. 170 (2003), 91-135. Zbl1036.70006MR2017886
  9. [B] G. D. Birkhoff, Une generalization á n -dimensions du dernier théorème de géometrié de Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 192 (1931), 196-198. Zbl0001.17402
  10. [BL] G. D. Birkhoff – D. C. Lewis, On the periodic motions near a given periodic motion of a dynamical system, Ann. Mat. Pura Appl., IV. Ser. 12 (1933), 117-133. Zbl0007.37104MR1553217
  11. [Bo] J. Bourgain, On Melnikov’s persistency problem, Math. Res. Lett. 4 (1997), 445-458. Zbl0897.58020MR1470416
  12. [BHS] H. W. Broer – G. B. Huitema – M. B. Sevriuk, “Quasi periodic motions in families of dynamical systems”, Lecture Notes in Math. 1645, Springer, 1996. Zbl0870.58087MR1484969
  13. [CZ] C. Conley – E. Zehnder, “An index theory for periodic solutions of a Hamiltonian system”, Lecture Notes in Mathematics 1007, Springer, 1983, 132-145. Zbl0528.34043MR730268
  14. [CZ1] C. Conley – E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. 73 (1983), 33-49. Zbl0516.58017MR707347
  15. [E] L. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), 115-147. Zbl0685.58024MR1001032
  16. [J] W. H. Jefferys, Periodic orbits in the three-dimensional three-body problem, Astronom. J. 71 (1966), 566-567. MR192693
  17. [JM] W. H. Jefferys – J. Moser, Quasi-periodic solutions for the three-body problem, Astronom. J. 71 (1966), 568-578. Zbl0177.52903MR207375
  18. [JV] Á. Jorba – J. Villanueva, On the Normal Behaviour of Partially Elliptic Lower Dimensional Tori of Hamiltonian Systems, Nonlinearity 10 (1997), 783-822. Zbl0924.58025MR1457746
  19. [K] S. B. Kuksin, Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation, Mat. Sb. (N.S.) 136 (178) (1988), 396-412, 431; translation in Math. USSR-Sb. 64 (1989), 397-413. Zbl0657.58033MR959490
  20. [LR] J. Laskar – P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom. 62 (1995), 193-217. Zbl0837.70008MR1364477
  21. [L] D. C. Lewis, Sulle oscillazioni periodiche di un sistema dinamico, Atti Accad. Naz. Rend. Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (1934), 234-237. Zbl0009.08903
  22. [M] V. K. Melnikov, On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function, Dokl. Akad. Nauk SSSR 165 (1965), 1245-1248. Zbl0143.11801MR201753
  23. [Mo] J. Moser, “Proof of a generalized form of a fixed point Theorem due to G. D. Birkhoff”, In: Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNP, Rio de Janeiro, 1976), 464-494. Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977. Zbl0358.58009MR494305
  24. [P] H. Poincaré, “Les Méthodes nouvelles de la Mécanique Céleste”, Gauthier Villars, Paris, 1892. Zbl25.1847.03JFM30.0834.08
  25. [Pö] J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), 653-696. Zbl0542.58015MR668410
  26. [Pö1] J. Pöschel, On elliptic lower dimensional tori in Hamiltonian system, Math. Z. 202 (1989), 559-608. Zbl0662.58037MR1022821
  27. [Pö2] J. Pöschel, A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 119-148. Zbl0870.34060MR1401420
  28. [R] P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions, Celestial Mech. Dynam. Astronom. 62 (1995), 219-261. Zbl0837.70009MR1364478
  29. [W] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), 479-528. Zbl0708.35087MR1040892
  30. [XY] J. Xu – J. You, Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition, J. Math. Pures Appl. 80 (2001), 1045-1067. Zbl1031.37053MR1876763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.