Partial regularity of free discontinuity sets, I
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 24, Issue: 1, page 1-38
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAmbrosio, Luigi, and Pallara, Diego. "Partial regularity of free discontinuity sets, I." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.1 (1997): 1-38. <http://eudml.org/doc/84254>.
@article{Ambrosio1997,
author = {Ambrosio, Luigi, Pallara, Diego},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {spaces SBV of special functions of bounded variation; free discontinuity problems; variational models of image segmentation; quasi-minimizers; Mumford-Shah functional},
language = {eng},
number = {1},
pages = {1-38},
publisher = {Scuola normale superiore},
title = {Partial regularity of free discontinuity sets, I},
url = {http://eudml.org/doc/84254},
volume = {24},
year = {1997},
}
TY - JOUR
AU - Ambrosio, Luigi
AU - Pallara, Diego
TI - Partial regularity of free discontinuity sets, I
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 1
SP - 1
EP - 38
LA - eng
KW - spaces SBV of special functions of bounded variation; free discontinuity problems; variational models of image segmentation; quasi-minimizers; Mumford-Shah functional
UR - http://eudml.org/doc/84254
ER -
References
top- [1] W.K. Allard, On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. Zbl0252.49028MR307015
- [2] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital.B3 (1989), 857-881. Zbl0767.49001MR1032614
- [3] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. Zbl0711.49064MR1068374
- [4] L. Ambrosio, Variational problems in S B V, Acta App. Math. (1989), 1-40. Zbl0697.49004MR1029833
- [5] L. Ambrosio, A new proof of SBV compactness theorem, Calc. Var. 3 (1995), 127-137. Zbl0837.49011MR1384840
- [6] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity of free discontinuity sets II, (1995), to appear. Zbl0896.49024
- [7] A. Blake - A. Zisserman, Visual Reconstruction, M.I.T. Press, 1987. MR919733
- [8] A. Bonnet, On the regularity of edges in the Mumford-Shah model for image segmentation, Ann. Inst. H. Poincaré, to appear.
- [9] K.A. Brakke, The motion of a surface by its mean curvature, Princeton U.P., 1978. Zbl0386.53047MR485012
- [10] M. Carriero - A. Leaci, Existence theorem for a Dirichlet problem withfree discontinuity set, Nonlinear Anal. 15 (1990), 661-677. Zbl0713.49003MR1073957
- [11] M. Carriero - A. Leaci, Sk-valued maps minimizing the Lp norm of the gradient with free discontinuities, Ann. Scuola Norm. Sup. Pisa Cl. Sci IV18 (1991), 321-352. Zbl0753.49018MR1145314
- [12] M. Carriero - A. Leaci - D. Pallara - E. Pascali, Euler Conditions for a Minimum Problem with Free Discontinuity Set, Preprint Dip. di Matematica8Lecce, 1988.
- [13] M. Carriero - A. Leaci - F. Tomarelli, Plastic free discontinuities and special bounded hessian, C.R. Acad. Sci. Paris Sér. I Math.314 (1992), 595-600. Zbl0794.49011MR1158743
- [14] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math. 168 (1992), 89-151. Zbl0772.49006MR1149865
- [15] G. David - S. Semmes, On the singular set of minimizers of the Mumford - Shahfunctional, J. Math. Pures Appl., to appear. Zbl0853.49010
- [16] G. David, C1 -arcs for the minimizers of the Mumford- Shah functional, SIAM J. Appl. Math.56 (1996), 783-888. Zbl0870.49020MR1389754
- [17] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, in: Frontiers in pure and applied Mathematics, a collection of papers dedicated to J.L.Lions on the occasion of his 60th birthday, R. Dautray ed., North Holland, 1991. Zbl0758.49002MR1110593
- [18] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. Zbl0715.49014MR1152641
- [19] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
- [20] H. Federer, Geometric measure theory, Springer Verlag, 1969. Zbl0176.00801MR257325
- [21] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton U. P., 1983. Zbl0516.49003MR717034
- [22] F.H. Lin, Variational problems with free interfaces, Calc. Var.1 (1993), 149-168. Zbl0794.49038MR1261721
- [23] J.M. Morel - S. Solimini, Variational models in image segmentation, Birkhäuser, 1994. Zbl0827.68111
- [24] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.17 (1989) 577-685. Zbl0691.49036MR997568
- [25] D. Pallara, Regularity of minimizers of the Mumford-Shah functional, In: Foundations of Computational Mathematics, IMPA, Rio de Janeiro, 1997, F. Cucker and M. Shub eds, Springer, pp. 326-345. Zbl0867.68115MR1661991
- [26] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 1983. Zbl0546.49019MR756417
Citations in EuDML Documents
top- Luigi Ambrosio, Nicola Fusco, Diego Pallara, Partial regularity of free discontinuity sets, II
- Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans
- Guy David, Jean-Christophe Léger, Monotonicity and separation for the Mumford–Shah problem
- Irene Fonseca, Nicola Fusco, Regularity results for anisotropic image segmentation models
- Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans
- Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.