Partial regularity of free discontinuity sets, I

Luigi Ambrosio; Diego Pallara

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 1, page 1-38
  • ISSN: 0391-173X

How to cite

top

Ambrosio, Luigi, and Pallara, Diego. "Partial regularity of free discontinuity sets, I." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.1 (1997): 1-38. <http://eudml.org/doc/84254>.

@article{Ambrosio1997,
author = {Ambrosio, Luigi, Pallara, Diego},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {spaces SBV of special functions of bounded variation; free discontinuity problems; variational models of image segmentation; quasi-minimizers; Mumford-Shah functional},
language = {eng},
number = {1},
pages = {1-38},
publisher = {Scuola normale superiore},
title = {Partial regularity of free discontinuity sets, I},
url = {http://eudml.org/doc/84254},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Ambrosio, Luigi
AU - Pallara, Diego
TI - Partial regularity of free discontinuity sets, I
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 1
SP - 1
EP - 38
LA - eng
KW - spaces SBV of special functions of bounded variation; free discontinuity problems; variational models of image segmentation; quasi-minimizers; Mumford-Shah functional
UR - http://eudml.org/doc/84254
ER -

References

top
  1. [1] W.K. Allard, On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. Zbl0252.49028MR307015
  2. [2] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital.B3 (1989), 857-881. Zbl0767.49001MR1032614
  3. [3] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. Zbl0711.49064MR1068374
  4. [4] L. Ambrosio, Variational problems in S B V, Acta App. Math. (1989), 1-40. Zbl0697.49004MR1029833
  5. [5] L. Ambrosio, A new proof of SBV compactness theorem, Calc. Var. 3 (1995), 127-137. Zbl0837.49011MR1384840
  6. [6] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity of free discontinuity sets II, (1995), to appear. Zbl0896.49024
  7. [7] A. Blake - A. Zisserman, Visual Reconstruction, M.I.T. Press, 1987. MR919733
  8. [8] A. Bonnet, On the regularity of edges in the Mumford-Shah model for image segmentation, Ann. Inst. H. Poincaré, to appear. 
  9. [9] K.A. Brakke, The motion of a surface by its mean curvature, Princeton U.P., 1978. Zbl0386.53047MR485012
  10. [10] M. Carriero - A. Leaci, Existence theorem for a Dirichlet problem withfree discontinuity set, Nonlinear Anal. 15 (1990), 661-677. Zbl0713.49003MR1073957
  11. [11] M. Carriero - A. Leaci, Sk-valued maps minimizing the Lp norm of the gradient with free discontinuities, Ann. Scuola Norm. Sup. Pisa Cl. Sci IV18 (1991), 321-352. Zbl0753.49018MR1145314
  12. [12] M. Carriero - A. Leaci - D. Pallara - E. Pascali, Euler Conditions for a Minimum Problem with Free Discontinuity Set, Preprint Dip. di Matematica8Lecce, 1988. 
  13. [13] M. Carriero - A. Leaci - F. Tomarelli, Plastic free discontinuities and special bounded hessian, C.R. Acad. Sci. Paris Sér. I Math.314 (1992), 595-600. Zbl0794.49011MR1158743
  14. [14] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math. 168 (1992), 89-151. Zbl0772.49006MR1149865
  15. [15] G. David - S. Semmes, On the singular set of minimizers of the Mumford - Shahfunctional, J. Math. Pures Appl., to appear. Zbl0853.49010
  16. [16] G. David, C1 -arcs for the minimizers of the Mumford- Shah functional, SIAM J. Appl. Math.56 (1996), 783-888. Zbl0870.49020MR1389754
  17. [17] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, in: Frontiers in pure and applied Mathematics, a collection of papers dedicated to J.L.Lions on the occasion of his 60th birthday, R. Dautray ed., North Holland, 1991. Zbl0758.49002MR1110593
  18. [18] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. Zbl0715.49014MR1152641
  19. [19] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  20. [20] H. Federer, Geometric measure theory, Springer Verlag, 1969. Zbl0176.00801MR257325
  21. [21] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton U. P., 1983. Zbl0516.49003MR717034
  22. [22] F.H. Lin, Variational problems with free interfaces, Calc. Var.1 (1993), 149-168. Zbl0794.49038MR1261721
  23. [23] J.M. Morel - S. Solimini, Variational models in image segmentation, Birkhäuser, 1994. Zbl0827.68111
  24. [24] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.17 (1989) 577-685. Zbl0691.49036MR997568
  25. [25] D. Pallara, Regularity of minimizers of the Mumford-Shah functional, In: Foundations of Computational Mathematics, IMPA, Rio de Janeiro, 1997, F. Cucker and M. Shub eds, Springer, pp. 326-345. Zbl0867.68115MR1661991
  26. [26] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 1983. Zbl0546.49019MR756417

Citations in EuDML Documents

top
  1. Luigi Ambrosio, Nicola Fusco, Diego Pallara, Partial regularity of free discontinuity sets, II
  2. Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans 3
  3. Guy David, Jean-Christophe Léger, Monotonicity and separation for the Mumford–Shah problem
  4. Irene Fonseca, Nicola Fusco, Regularity results for anisotropic image segmentation models
  5. Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans 3
  6. Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.