A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 1, page 37-52
- ISSN: 0294-1449
Access Full Article
topHow to cite
topShargorodsky, E., and Toland, J. F.. "A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 37-52. <http://eudml.org/doc/78573>.
@article{Shargorodsky2003,
author = {Shargorodsky, E., Toland, J. F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity theory; Stokes waves; critical point; Bernoulli boundary condition; Euler-Lagrange equation},
language = {eng},
number = {1},
pages = {37-52},
publisher = {Elsevier},
title = {A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves},
url = {http://eudml.org/doc/78573},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Shargorodsky, E.
AU - Toland, J. F.
TI - A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 37
EP - 52
LA - eng
KW - regularity theory; Stokes waves; critical point; Bernoulli boundary condition; Euler-Lagrange equation
UR - http://eudml.org/doc/78573
ER -
References
top- [1] Babenko K.I., Some remarks on the theory of surface waves of finite amplitude, Soviet Math. Dokl.35 (3) (1987) 599-603, See also loc. cit. 647–650. Zbl0641.76007MR898306
- [2] Buffoni B., Dancer E.N., Toland J.F., The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (3) (2000) 207-240. Zbl0959.76010MR1764945
- [3] Buffoni B., Dancer E.N., Toland J.F., The sub-harmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (3) (2000) 241-270. Zbl0962.76012MR1764946
- [4] Dyachenko A.I., Kuznetsov E.A., Spector M.D., Zakharov V.E., Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett. A1 (1996) 73-79.
- [5] Gakhov F.D., Boundary Value Problems, Pergamon Press, Oxford, 1966. Zbl0141.08001MR198152
- [6] Garnett J.B., Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024MR628971
- [7] Koosis P., Introduction to Hp Spaces, Cambridge University Press, Cambridge, 1999. Zbl1024.30001MR1669574
- [8] Lewy H., A note on harmonic functions and a hydrodynamic application, Proc. Amer. Math. Soc.3 (1952) 111-113. Zbl0046.41706MR49399
- [9] Lieb E.H., Loss M., Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
- [10] McLeod J.B., The Stokes and Krasovskii conjectures for the wave of greatest height, in: Studies in Applied Math., 98, 1997, pp. 311-334, In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report Number 2041, 1979 (sic). Zbl0882.76014MR1446239
- [11] Muskhelishvili N.I., Singular Integral Equations, Wolters–Noordhoff Publishing, Groningen, 1972. Zbl0174.16201MR355494
- [12] Plotnikov P.I., Non-uniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals, Math. USSR Izvestiya38 (2) (1992) 333-357. Zbl0795.76017
- [13] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1986. Zbl0925.00005
- [14] Toland J.F., Stokes waves, Topological Methods in Nonlinear Analysis7 (1996) 1-48, Topological Methods in Nonlinear Analysis8 (1997) 412-414. Zbl0897.35067MR1422004
- [15] Toland J.F., Regularity of Stokes waves in Hardy spaces and in spaces of distributions, J. Math. Pure Appl.79 (9) (2000) 901-917. Zbl0976.35052MR1792729
- [16] Toland J.F., On a pseudo-differential equation for Stokes waves, Arch. Rational Mech. Anal.162 (2002) 179-189. Zbl1028.35126MR1897380
- [17] Torchinsky A., Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986. Zbl0621.42001MR869816
- [18] Zygmund A., Trigonometric Series I & II, Cambridge University Press, Cambridge, 1959. Zbl0367.42001MR107776
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.