A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves

E. Shargorodsky; J. F. Toland

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 37-52
  • ISSN: 0294-1449

How to cite

top

Shargorodsky, E., and Toland, J. F.. "A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 37-52. <http://eudml.org/doc/78573>.

@article{Shargorodsky2003,
author = {Shargorodsky, E., Toland, J. F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity theory; Stokes waves; critical point; Bernoulli boundary condition; Euler-Lagrange equation},
language = {eng},
number = {1},
pages = {37-52},
publisher = {Elsevier},
title = {A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves},
url = {http://eudml.org/doc/78573},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Shargorodsky, E.
AU - Toland, J. F.
TI - A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 37
EP - 52
LA - eng
KW - regularity theory; Stokes waves; critical point; Bernoulli boundary condition; Euler-Lagrange equation
UR - http://eudml.org/doc/78573
ER -

References

top
  1. [1] Babenko K.I., Some remarks on the theory of surface waves of finite amplitude, Soviet Math. Dokl.35 (3) (1987) 599-603, See also loc. cit. 647–650. Zbl0641.76007MR898306
  2. [2] Buffoni B., Dancer E.N., Toland J.F., The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (3) (2000) 207-240. Zbl0959.76010MR1764945
  3. [3] Buffoni B., Dancer E.N., Toland J.F., The sub-harmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (3) (2000) 241-270. Zbl0962.76012MR1764946
  4. [4] Dyachenko A.I., Kuznetsov E.A., Spector M.D., Zakharov V.E., Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett. A1 (1996) 73-79. 
  5. [5] Gakhov F.D., Boundary Value Problems, Pergamon Press, Oxford, 1966. Zbl0141.08001MR198152
  6. [6] Garnett J.B., Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024MR628971
  7. [7] Koosis P., Introduction to Hp Spaces, Cambridge University Press, Cambridge, 1999. Zbl1024.30001MR1669574
  8. [8] Lewy H., A note on harmonic functions and a hydrodynamic application, Proc. Amer. Math. Soc.3 (1952) 111-113. Zbl0046.41706MR49399
  9. [9] Lieb E.H., Loss M., Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
  10. [10] McLeod J.B., The Stokes and Krasovskii conjectures for the wave of greatest height, in: Studies in Applied Math., 98, 1997, pp. 311-334, In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report Number 2041, 1979 (sic). Zbl0882.76014MR1446239
  11. [11] Muskhelishvili N.I., Singular Integral Equations, Wolters–Noordhoff Publishing, Groningen, 1972. Zbl0174.16201MR355494
  12. [12] Plotnikov P.I., Non-uniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals, Math. USSR Izvestiya38 (2) (1992) 333-357. Zbl0795.76017
  13. [13] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1986. Zbl0925.00005
  14. [14] Toland J.F., Stokes waves, Topological Methods in Nonlinear Analysis7 (1996) 1-48, Topological Methods in Nonlinear Analysis8 (1997) 412-414. Zbl0897.35067MR1422004
  15. [15] Toland J.F., Regularity of Stokes waves in Hardy spaces and in spaces of distributions, J. Math. Pure Appl.79 (9) (2000) 901-917. Zbl0976.35052MR1792729
  16. [16] Toland J.F., On a pseudo-differential equation for Stokes waves, Arch. Rational Mech. Anal.162 (2002) 179-189. Zbl1028.35126MR1897380
  17. [17] Torchinsky A., Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986. Zbl0621.42001MR869816
  18. [18] Zygmund A., Trigonometric Series I & II, Cambridge University Press, Cambridge, 1959. Zbl0367.42001MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.