Relaxation of convex functionals : the gap problem

E. Acerbi; G. Bouchitté; I. Fonseca

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 3, page 359-390
  • ISSN: 0294-1449

How to cite

top

Acerbi, E., Bouchitté, G., and Fonseca, I.. "Relaxation of convex functionals : the gap problem." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 359-390. <http://eudml.org/doc/78583>.

@article{Acerbi2003,
author = {Acerbi, E., Bouchitté, G., Fonseca, I.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {convex variational problems; Lavrentiev phenomenon; quasiconvexity; relaxation},
language = {eng},
number = {3},
pages = {359-390},
publisher = {Elsevier},
title = {Relaxation of convex functionals : the gap problem},
url = {http://eudml.org/doc/78583},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Acerbi, E.
AU - Bouchitté, G.
AU - Fonseca, I.
TI - Relaxation of convex functionals : the gap problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 359
EP - 390
LA - eng
KW - convex variational problems; Lavrentiev phenomenon; quasiconvexity; relaxation
UR - http://eudml.org/doc/78583
ER -

References

top
  1. [1] Acerbi E., Maso G.Dal, New lower semicontinuity results for polyconvex integrals, Cal. Var.2 (1994) 329-337. Zbl0810.49014MR1385074
  2. [2] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  3. [3] Ball J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  4. [4] Ball J.M., Murat F., W1,p quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
  5. [5] G. Bouchitté, I. Fonseca, G. Leoni, L. Mascarenhas, A global method for relaxation in W1,p and in SBVp, To appear in Arch. Rational Mech. Anal. Zbl0921.49004MR1941478
  6. [6] Bouchitté G., Fonseca I., Malý J., The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent, Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463-479. Zbl0907.49008MR1632814
  7. [7] Bouchitté G., Fonseca I., Mascarenhas L., A global method for relaxation, Arch. Rational Mech. Anal.144 (1998) 1-46. Zbl0921.49004MR1656477
  8. [8] Carbone L., De Arcangelis R., Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions, Ricerche Mat.39 (1990) 99-129. Zbl0735.49008
  9. [9] Celada P., Dal Maso G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré Anal. Non Linéaire11 (1994) 661-691. Zbl0833.49013MR1310627
  10. [10] Dacorogna B., Direct Methods in the Calculus of Variations, Applied Math. Sciences, 78, Springer-Verlag, 1989. Zbl0703.49001MR990890
  11. [11] Dacorogna B., Marcellini P., Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants, C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 393-396. Zbl0723.49007MR1071650
  12. [12] Dal Maso G., Sbordone C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z.218 (1995) 603-609. Zbl0822.49010MR1326990
  13. [13] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  14. [14] Fan X., Zhao D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA36 (A) (1999) 295-318. Zbl0927.46022MR1688232
  15. [15] Fonseca I., Malý J., Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997) 309-338. Zbl0868.49011MR1450951
  16. [16] Fonseca I., Marcellini P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal.7 (1997) 57-81. Zbl0915.49011MR1630777
  17. [17] Fusco N., Hutchinson J.E., A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math.85 (1995) 35-50. Zbl0874.49015MR1329439
  18. [18] Gangbo W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures Appl.73 (1994) 455-469. Zbl0829.49011MR1300984
  19. [19] Ioffe A.D., On lower semicontinuity of integral functionals I, SIAM J. Control Optim.15 (1977) 521-538. Zbl0361.46037MR637234
  20. [20] James R.D., Spector S.J., The formation of filamentary voids in solids, J. Mech. Phys. Solids39 (1991) 783-813. Zbl0761.73020MR1120242
  21. [21] James R.D., Spector S.J., The formation of filamentary voids in solids, Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 681-691. 
  22. [22] J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals, Preprint, Vortragsreihe, Bonn, 1993. Zbl0813.49017MR1237608
  23. [23] Malý J., Lower semicontinuity of quasiconvex integrals, Manuscripta Math.85 (1994) 419-428. Zbl0862.49017MR1305752
  24. [24] Marcellini P., Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math.51 (1985) 1-28. Zbl0573.49010MR788671
  25. [25] Marcellini P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 391-409. Zbl0609.49009MR868523
  26. [26] Morrey C.B., Multiple integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701MR202511
  27. [27] Müller S., Spector S.J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal.131 (1995) 1-66. Zbl0836.73025MR1346364
  28. [28] Sivaloganathan J., On cavitation and degenerate cavitation under internal hydrostatic pressure, Roy. Soc. London Proc. Ser. A Math. Phys. Eng. Sci.455 (1999) 3645-3664. Zbl0949.74009MR1811313
  29. [29] Zhikov V.V., On Lavrentiev's phenomenon, Russian J. Math. Phys.3 (1995) 249-269. Zbl0910.49020MR1350506
  30. [30] Zhikov V.V., On some variational problems, Russian J. Math. Phys.5 (1997) 105-116. Zbl0917.49006MR1486765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.