Relaxation of convex functionals : the gap problem
E. Acerbi; G. Bouchitté; I. Fonseca
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 3, page 359-390
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAcerbi, E., Bouchitté, G., and Fonseca, I.. "Relaxation of convex functionals : the gap problem." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 359-390. <http://eudml.org/doc/78583>.
@article{Acerbi2003,
author = {Acerbi, E., Bouchitté, G., Fonseca, I.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {convex variational problems; Lavrentiev phenomenon; quasiconvexity; relaxation},
language = {eng},
number = {3},
pages = {359-390},
publisher = {Elsevier},
title = {Relaxation of convex functionals : the gap problem},
url = {http://eudml.org/doc/78583},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Acerbi, E.
AU - Bouchitté, G.
AU - Fonseca, I.
TI - Relaxation of convex functionals : the gap problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 359
EP - 390
LA - eng
KW - convex variational problems; Lavrentiev phenomenon; quasiconvexity; relaxation
UR - http://eudml.org/doc/78583
ER -
References
top- [1] Acerbi E., Maso G.Dal, New lower semicontinuity results for polyconvex integrals, Cal. Var.2 (1994) 329-337. Zbl0810.49014MR1385074
- [2] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [3] Ball J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
- [4] Ball J.M., Murat F., W1,p quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
- [5] G. Bouchitté, I. Fonseca, G. Leoni, L. Mascarenhas, A global method for relaxation in W1,p and in SBVp, To appear in Arch. Rational Mech. Anal. Zbl0921.49004MR1941478
- [6] Bouchitté G., Fonseca I., Malý J., The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent, Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463-479. Zbl0907.49008MR1632814
- [7] Bouchitté G., Fonseca I., Mascarenhas L., A global method for relaxation, Arch. Rational Mech. Anal.144 (1998) 1-46. Zbl0921.49004MR1656477
- [8] Carbone L., De Arcangelis R., Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions, Ricerche Mat.39 (1990) 99-129. Zbl0735.49008
- [9] Celada P., Dal Maso G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré Anal. Non Linéaire11 (1994) 661-691. Zbl0833.49013MR1310627
- [10] Dacorogna B., Direct Methods in the Calculus of Variations, Applied Math. Sciences, 78, Springer-Verlag, 1989. Zbl0703.49001MR990890
- [11] Dacorogna B., Marcellini P., Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants, C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 393-396. Zbl0723.49007MR1071650
- [12] Dal Maso G., Sbordone C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z.218 (1995) 603-609. Zbl0822.49010MR1326990
- [13] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [14] Fan X., Zhao D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA36 (A) (1999) 295-318. Zbl0927.46022MR1688232
- [15] Fonseca I., Malý J., Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997) 309-338. Zbl0868.49011MR1450951
- [16] Fonseca I., Marcellini P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal.7 (1997) 57-81. Zbl0915.49011MR1630777
- [17] Fusco N., Hutchinson J.E., A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math.85 (1995) 35-50. Zbl0874.49015MR1329439
- [18] Gangbo W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures Appl.73 (1994) 455-469. Zbl0829.49011MR1300984
- [19] Ioffe A.D., On lower semicontinuity of integral functionals I, SIAM J. Control Optim.15 (1977) 521-538. Zbl0361.46037MR637234
- [20] James R.D., Spector S.J., The formation of filamentary voids in solids, J. Mech. Phys. Solids39 (1991) 783-813. Zbl0761.73020MR1120242
- [21] James R.D., Spector S.J., The formation of filamentary voids in solids, Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 681-691.
- [22] J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals, Preprint, Vortragsreihe, Bonn, 1993. Zbl0813.49017MR1237608
- [23] Malý J., Lower semicontinuity of quasiconvex integrals, Manuscripta Math.85 (1994) 419-428. Zbl0862.49017MR1305752
- [24] Marcellini P., Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math.51 (1985) 1-28. Zbl0573.49010MR788671
- [25] Marcellini P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 391-409. Zbl0609.49009MR868523
- [26] Morrey C.B., Multiple integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701MR202511
- [27] Müller S., Spector S.J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal.131 (1995) 1-66. Zbl0836.73025MR1346364
- [28] Sivaloganathan J., On cavitation and degenerate cavitation under internal hydrostatic pressure, Roy. Soc. London Proc. Ser. A Math. Phys. Eng. Sci.455 (1999) 3645-3664. Zbl0949.74009MR1811313
- [29] Zhikov V.V., On Lavrentiev's phenomenon, Russian J. Math. Phys.3 (1995) 249-269. Zbl0910.49020MR1350506
- [30] Zhikov V.V., On some variational problems, Russian J. Math. Phys.5 (1997) 105-116. Zbl0917.49006MR1486765
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.