Global attraction to solitary waves for Klein-Gordon equation with mean field interaction

Alexander Komech; Andrew Komech

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 855-868
  • ISSN: 0294-1449

How to cite

top

Komech, Alexander, and Komech, Andrew. "Global attraction to solitary waves for Klein-Gordon equation with mean field interaction." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 855-868. <http://eudml.org/doc/78870>.

@article{Komech2009,
author = {Komech, Alexander, Komech, Andrew},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {attractors; long-time asymptotics; solitary waves; solitary asymptotics; nonlinear Klein-Gordon equation; dispersive Hamiltonian systems; Titchmarsh convolution theorem; -invariance},
language = {eng},
number = {3},
pages = {855-868},
publisher = {Elsevier},
title = {Global attraction to solitary waves for Klein-Gordon equation with mean field interaction},
url = {http://eudml.org/doc/78870},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Komech, Alexander
AU - Komech, Andrew
TI - Global attraction to solitary waves for Klein-Gordon equation with mean field interaction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 855
EP - 868
LA - eng
KW - attractors; long-time asymptotics; solitary waves; solitary asymptotics; nonlinear Klein-Gordon equation; dispersive Hamiltonian systems; Titchmarsh convolution theorem; -invariance
UR - http://eudml.org/doc/78870
ER -

References

top
  1. [1] Buslaev V.S., Perel'man G.S., Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, St. Petersburg Math. J.4 (1993) 1111-1142. Zbl0853.35112MR1199635
  2. [2] Buslaev V.S., Perel'man G.S., On the stability of solitary waves for nonlinear Schrödinger equations, in: Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98. Zbl0841.35108MR1334139
  3. [3] Buslaev V.S., Sulem C., On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 419-475. Zbl1028.35139MR1972870
  4. [4] Cuccagna S., Asymptotic stability of the ground states of the nonlinear Schrödinger equation, Rend. Istit. Mat. Univ. Trieste32 (2001) 105-118, (2002), dedicated to the memory of Marco Reni. Zbl1006.35088MR1893394
  5. [5] Cuccagna S., Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math.54 (2001) 1110-1145. Zbl1031.35129MR1835384
  6. [6] Cuccagna S., On asymptotic stability of ground states of NLS, Rev. Math. Phys.15 (2003) 877-903. Zbl1084.35089MR2027616
  7. [7] Komech A., On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Ration. Mech. Anal.149 (1999) 213-228. Zbl0939.35030MR1726676
  8. [8] Komech A.I., Stabilization of the interaction of a string with a nonlinear oscillator, Moscow Univ. Math. Bull.46 (1991) 34-39. Zbl0784.35011MR1203302
  9. [9] A.I. Komech, A.A. Komech, On global attraction to quantum stationary states II. Several nonlinear oscillators coupled to massive scalar field, MPI MIS Leipzig preprint 17/2007, 2007. 
  10. [10] Komech A.I., On stabilization of string-nonlinear oscillator interaction, J. Math. Anal. Appl.196 (1995) 384-409. Zbl0859.35076MR1359949
  11. [11] Komech A.I., Komech A.A., Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal.185 (2007) 105-142. Zbl1131.35003MR2308860
  12. [12] Komech A., Spohn H., Long-time asymptotics for the coupled Maxwell–Lorentz equations, Comm. Partial Differential Equations25 (2000) 559-584. Zbl0970.35149MR1748357
  13. [13] Komech A., Spohn H., Kunze M., Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations22 (1997) 307-335. Zbl0878.35094MR1434147
  14. [14] Komech A.I., Vainberg B., On asymptotic stability of stationary solutions to nonlinear wave and Klein–Gordon equations, Arch. Ration. Mech. Anal.134 (1996) 227-248. Zbl0863.35064MR1412428
  15. [15] Morawetz C.S., Strauss W.A., Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math.25 (1972) 1-31. Zbl0228.35055MR303097
  16. [16] Pillet C.-A., Wayne C.E., Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations141 (1997) 310-326. Zbl0890.35016MR1488355
  17. [17] Segal I.E., The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France91 (1963) 129-135. Zbl0178.45403MR153967
  18. [18] Segal I.E., Non-linear semi-groups, Ann. of Math. (2)78 (1963) 339-364. Zbl0204.16004MR152908
  19. [19] Soffer A., Weinstein M.I., Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys.133 (1990) 119-146. Zbl0721.35082MR1071238
  20. [20] Soffer A., Weinstein M.I., Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data, J. Differential Equations98 (1992) 376-390. Zbl0795.35073MR1170476
  21. [21] Soffer A., Weinstein M.I., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math.136 (1999) 9-74. Zbl0910.35107MR1681113
  22. [22] Strauss W.A., Decay and asymptotics for u = f u , J. Funct. Anal.2 (1968) 409-457. Zbl0182.13602MR233062
  23. [23] Tao T., A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations, Dynam. Partial Differential Equations4 (2007) 1-53. Zbl1142.35088MR2304091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.