Global attraction to solitary waves for Klein-Gordon equation with mean field interaction
Alexander Komech; Andrew Komech
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 855-868
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKomech, Alexander, and Komech, Andrew. "Global attraction to solitary waves for Klein-Gordon equation with mean field interaction." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 855-868. <http://eudml.org/doc/78870>.
@article{Komech2009,
author = {Komech, Alexander, Komech, Andrew},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {attractors; long-time asymptotics; solitary waves; solitary asymptotics; nonlinear Klein-Gordon equation; dispersive Hamiltonian systems; Titchmarsh convolution theorem; -invariance},
language = {eng},
number = {3},
pages = {855-868},
publisher = {Elsevier},
title = {Global attraction to solitary waves for Klein-Gordon equation with mean field interaction},
url = {http://eudml.org/doc/78870},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Komech, Alexander
AU - Komech, Andrew
TI - Global attraction to solitary waves for Klein-Gordon equation with mean field interaction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 855
EP - 868
LA - eng
KW - attractors; long-time asymptotics; solitary waves; solitary asymptotics; nonlinear Klein-Gordon equation; dispersive Hamiltonian systems; Titchmarsh convolution theorem; -invariance
UR - http://eudml.org/doc/78870
ER -
References
top- [1] Buslaev V.S., Perel'man G.S., Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, St. Petersburg Math. J.4 (1993) 1111-1142. Zbl0853.35112MR1199635
- [2] Buslaev V.S., Perel'man G.S., On the stability of solitary waves for nonlinear Schrödinger equations, in: Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98. Zbl0841.35108MR1334139
- [3] Buslaev V.S., Sulem C., On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 419-475. Zbl1028.35139MR1972870
- [4] Cuccagna S., Asymptotic stability of the ground states of the nonlinear Schrödinger equation, Rend. Istit. Mat. Univ. Trieste32 (2001) 105-118, (2002), dedicated to the memory of Marco Reni. Zbl1006.35088MR1893394
- [5] Cuccagna S., Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math.54 (2001) 1110-1145. Zbl1031.35129MR1835384
- [6] Cuccagna S., On asymptotic stability of ground states of NLS, Rev. Math. Phys.15 (2003) 877-903. Zbl1084.35089MR2027616
- [7] Komech A., On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Ration. Mech. Anal.149 (1999) 213-228. Zbl0939.35030MR1726676
- [8] Komech A.I., Stabilization of the interaction of a string with a nonlinear oscillator, Moscow Univ. Math. Bull.46 (1991) 34-39. Zbl0784.35011MR1203302
- [9] A.I. Komech, A.A. Komech, On global attraction to quantum stationary states II. Several nonlinear oscillators coupled to massive scalar field, MPI MIS Leipzig preprint 17/2007, 2007.
- [10] Komech A.I., On stabilization of string-nonlinear oscillator interaction, J. Math. Anal. Appl.196 (1995) 384-409. Zbl0859.35076MR1359949
- [11] Komech A.I., Komech A.A., Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal.185 (2007) 105-142. Zbl1131.35003MR2308860
- [12] Komech A., Spohn H., Long-time asymptotics for the coupled Maxwell–Lorentz equations, Comm. Partial Differential Equations25 (2000) 559-584. Zbl0970.35149MR1748357
- [13] Komech A., Spohn H., Kunze M., Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations22 (1997) 307-335. Zbl0878.35094MR1434147
- [14] Komech A.I., Vainberg B., On asymptotic stability of stationary solutions to nonlinear wave and Klein–Gordon equations, Arch. Ration. Mech. Anal.134 (1996) 227-248. Zbl0863.35064MR1412428
- [15] Morawetz C.S., Strauss W.A., Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math.25 (1972) 1-31. Zbl0228.35055MR303097
- [16] Pillet C.-A., Wayne C.E., Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations141 (1997) 310-326. Zbl0890.35016MR1488355
- [17] Segal I.E., The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France91 (1963) 129-135. Zbl0178.45403MR153967
- [18] Segal I.E., Non-linear semi-groups, Ann. of Math. (2)78 (1963) 339-364. Zbl0204.16004MR152908
- [19] Soffer A., Weinstein M.I., Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys.133 (1990) 119-146. Zbl0721.35082MR1071238
- [20] Soffer A., Weinstein M.I., Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data, J. Differential Equations98 (1992) 376-390. Zbl0795.35073MR1170476
- [21] Soffer A., Weinstein M.I., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math.136 (1999) 9-74. Zbl0910.35107MR1681113
- [22] Strauss W.A., Decay and asymptotics for , J. Funct. Anal.2 (1968) 409-457. Zbl0182.13602MR233062
- [23] Tao T., A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations, Dynam. Partial Differential Equations4 (2007) 1-53. Zbl1142.35088MR2304091
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.