Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows

Aubin Arroyo; Federico Rodriguez Hertz

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 5, page 805-841
  • ISSN: 0294-1449

How to cite


Arroyo, Aubin, and Rodriguez Hertz, Federico. "Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows." Annales de l'I.H.P. Analyse non linéaire 20.5 (2003): 805-841. <http://eudml.org/doc/78598>.

author = {Arroyo, Aubin, Rodriguez Hertz, Federico},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-vector field; three-dimensional manifold; -topology; uniformly hyperbolic; homoclinic tangency; singular cycle; Poincaré flow; dominated splitting},
language = {eng},
number = {5},
pages = {805-841},
publisher = {Elsevier},
title = {Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows},
url = {http://eudml.org/doc/78598},
volume = {20},
year = {2003},

AU - Arroyo, Aubin
AU - Rodriguez Hertz, Federico
TI - Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 5
SP - 805
EP - 841
LA - eng
KW - -vector field; three-dimensional manifold; -topology; uniformly hyperbolic; homoclinic tangency; singular cycle; Poincaré flow; dominated splitting
UR - http://eudml.org/doc/78598
ER -


  1. [1] Bonatti C., Viana M., SRB measures for partially hyperbolic dynamical systems whose central direction is mostly contracting, Israel J. Math.115 (2000) 157-193. Zbl0996.37033MR1749677
  2. [2] C.I. Doering, Persistently transitive vector fields on three manifolds, in: Dynam. Syst. Biff. Theory, Pitman Res. Notes, Vol. 160, 59–89. Zbl0631.58016MR907891
  3. [3] Guckenheimer J., Williams R.F., Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math.50 (1979) 59-72. Zbl0436.58018MR556582
  4. [4] Hayashi S., Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. of Math. (2)145 (1) (1997) 81-137. Zbl0871.58067
  5. [5] Herman M.-R., Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math.49 (1979) 5-233. Zbl0448.58019MR538680
  6. [6] Hirsch M.W., Pugh C.C., Shub M., Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin, 1977. Zbl0355.58009MR501173
  7. [7] Labarca R., Pacífico M.J., Stability of singularity horseshoes, Topology25 (3) (1986) 337-352. Zbl0611.58033MR842429
  8. [8] Mañé R., Ergodic Theory and Differential Dynamics, Springer-Verlag, New York, 1987. Zbl0616.28007MR889254
  9. [9] Morales C.A., Pacífico M.J., Pujals E., On C1 robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math.326 (1) (1998) 81-86. Zbl0918.58036MR1649489
  10. [10] Newhouse S., Diffeomorphisms with infinitely many sinks, Topology13 (1974) 9-18. Zbl0275.58016MR339291
  11. [11] Newhouse S., Hyperbolic Limit Sets, Trans. Amer. Math. Soc.167 (1972) 125-150. Zbl0239.58009MR295388
  12. [12] Newhouse S., Lectures on dynamical systems, in: Progr. Math., 8, Birkhäuser, Boston, MA, 1980, pp. 1-114. Zbl0444.58001MR589590
  13. [13] Oseledets V.I., A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc.19 (1968) 197-231. Zbl0236.93034
  14. [14] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of attractors, Asterisque261 (2000) 339-351. Zbl1044.37014MR1755446
  15. [15] Palis J., On Morse–Smale dynamical systems, Topology8 (1968) 385-404. Zbl0189.23902MR246316
  16. [16] Palis J., Smale S., Structural stability theorems, Proc. Amer. Math. Soc. Symp. Pure Math.14 (1970) 223-232. Zbl0214.50702MR267603
  17. [17] Palis J., Takens F., Hyperbolicity and Sensitive Chaotic Dynamics of Homoclinic Bifurcations, Cambridge Univ. Press, Cambridge, 1993. Zbl0790.58014MR1237641
  18. [18] Pliss V.A., On a Conjecture of Smale, Differentsial'nye Uravneniya8 (1972) 268-282. Zbl0243.34077MR299909
  19. [19] Pugh C., The closing lemma, Amer. J. Math.89 (1967) 956-1009. Zbl0167.21803MR226669
  20. [20] Pugh C., An improved closing lemma and a general density theorem, Amer. J. Math.89 (1967) 1010-1021. Zbl0167.21804MR226670
  21. [21] Pujals E., Sambarino M., Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2)151 (3) (2000) 961-1023. Zbl0959.37040MR1779562
  22. [22] E. Pujals, M. Sambarino, On the dynamics of dominated splitting, to appear. Zbl1178.37032
  23. [23] Schwartz A.J., A generalization of a Poincaré–Bendixon theorem to closed two dimensional manifolds, Amer. J. Math.85 (1963) 453-458, Errata, ibid 85 (1963) 753. Zbl0116.06803MR155061
  24. [24] Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc.73 (1967) 747-817. Zbl0202.55202MR228014
  25. [25] A. Tahzibi, Stably ergodic systems which are not partially hyperbolic, to appear. Zbl1052.37019

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.