Global solutions to vortex density equations arising from sup-conductivity

Nader Masmoudi; Ping Zhang

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 4, page 441-458
  • ISSN: 0294-1449

How to cite


Masmoudi, Nader, and Zhang, Ping. "Global solutions to vortex density equations arising from sup-conductivity." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 441-458. <>.

author = {Masmoudi, Nader, Zhang, Ping},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Superconductivity; Vortex density; Young measure; Renormalized solutions},
language = {eng},
number = {4},
pages = {441-458},
publisher = {Elsevier},
title = {Global solutions to vortex density equations arising from sup-conductivity},
url = {},
volume = {22},
year = {2005},

AU - Masmoudi, Nader
AU - Zhang, Ping
TI - Global solutions to vortex density equations arising from sup-conductivity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 441
EP - 458
LA - eng
KW - Superconductivity; Vortex density; Young measure; Renormalized solutions
UR -
ER -


  1. [1] Chapman J.S., Rubinstein J.K., Schatzman M., A mean-field model of superconducting vortices, Eur. J. Appl. Math.7 (1996) 97-111. Zbl0849.35135MR1388106
  2. [2] Chemin J.Y., Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup.26 (1993) 517-542. Zbl0779.76011MR1235440
  3. [3] DiPerna R.J., Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
  4. [4] DiPerna R.J., Lions P.L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2)130 (1989) 321-366. Zbl0698.45010MR1014927
  5. [5] DiPerna R.J., Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys.108 (1987) 667-689. Zbl0626.35059MR877643
  6. [6] Du Q., Zhang P., Existence of weak solutions to some vortex density models, SIAM J. Math. Anal.34 (2003) 1279-1299. Zbl1044.35085MR2000970
  7. [7] Delort J.M., Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc.4 (1991) 553-586. Zbl0780.35073MR1102579
  8. [8] Elliott C.M., Schätzle R., Stoth B.E.E., Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity, Arch. Rational Mech. Anal.145 (1998) 99-127. Zbl0927.35117MR1664550
  9. [9] Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, vol. 74, Amer. Math. Soc., Providence, RI, 1990. Zbl0698.35004MR1034481
  10. [10] Jerrard R.L., Soner H.M., Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal.142 (1998) 99-125. Zbl0923.35167MR1629646
  11. [11] Joly J.L., Métivier G., Rauch J., Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc.347 (1995) 3921-3970. Zbl0857.35087MR1297533
  12. [12] Lin F., Some dynamical properties of Ginzburg–Landau vortices, Comm. Pure Appl. Math.51 (1998) 323-359. Zbl0853.35058MR1376654
  13. [13] Lin F., Zhang P., On the hydrodynamic limit of Ginzburg–Landau vortices, Discrete Contin. Dynam. Systems6 (2000) 121-142. Zbl1034.35128MR1739596
  14. [14] Lions P.L., Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models, Lecture Series in Mathematics and its Applications, vol. 6, Clarendon Press, Oxford, 1998. Zbl0908.76004MR1637634
  15. [15] Lions P.-L., Masmoudi N., Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B21 (2000) 131-146. Zbl0957.35109MR1763488
  16. [16] Schonbek M., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations7 (1982) 959-1000. Zbl0496.35058MR668586
  17. [17] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Research Notes in Math., vol. 39, Pitman, 1979. Zbl0437.35004MR584398
  18. [18] Vecchi I., Wu S., On L 1 -vorticity for 2-D incompressible flow, Manuscripta Math.78 (1993) 403-412. Zbl0807.35115MR1208650
  19. [19] Weinan E., Dynamics of vortex liquids in Ginsburg–Landau theories with application to superconductivity, Phys. Rev. B50 (1994) 1126-1135. Zbl0814.34039
  20. [20] Young L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. Zbl0177.37801MR259704
  21. [21] Yudovich V.I., Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Math.3 (1963) 1032-1066, (in Russian). English translation, USSR Comput. Math. Phys.3 (1963) 1407-1456. Zbl0147.44303
  22. [22] Zhang P., Zheng Y., Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rational Mech. Anal.155 (2000) 49-83. Zbl0982.35062MR1799274
  23. [23] Zhang P., Zheng Y., Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations26 (2001) 381-420. Zbl0989.35112MR1842038
  24. [24] P. Zhang, Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data, Ann. Inst. H. Poincaré Anal. Non Linéaire (2005), in press. Zbl1082.35129MR2124163

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.