On the periodic KdV equation in weighted Sobolev spaces

Thomas Kappeler; Jürgen Pöschel

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 841-853
  • ISSN: 0294-1449

How to cite

top

Kappeler, Thomas, and Pöschel, Jürgen. "On the periodic KdV equation in weighted Sobolev spaces." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 841-853. <http://eudml.org/doc/78869>.

@article{Kappeler2009,
author = {Kappeler, Thomas, Pöschel, Jürgen},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {periodic KdV equation; well posedness; weighted Sobolev spaces},
language = {eng},
number = {3},
pages = {841-853},
publisher = {Elsevier},
title = {On the periodic KdV equation in weighted Sobolev spaces},
url = {http://eudml.org/doc/78869},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Kappeler, Thomas
AU - Pöschel, Jürgen
TI - On the periodic KdV equation in weighted Sobolev spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 841
EP - 853
LA - eng
KW - periodic KdV equation; well posedness; weighted Sobolev spaces
UR - http://eudml.org/doc/78869
ER -

References

top
  1. [1] Airault H., McKean H., Moser J., Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem, Comm. Pure Appl. Math30 (1977) 95-148. Zbl0338.35024MR649926
  2. [2] Bättig D., Bloch A.M., Guillot J.-C., Kappeler T., On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS, Duke Math. J.79 (1995) 549-604. Zbl0855.58035MR1355177
  3. [3] Bättig D., Kappeler T., Mityagin B., On the Korteweg–de Vries equation: Frequencies and initial value problem, Pacific J. Math181 (1997) 1-55. Zbl0899.35096MR1491035
  4. [4] Bona J., Grujić Z., Kalisch H., Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 783-797. Zbl1095.35039MR2172859
  5. [5] Bona J.L., Smith R., The initial-value problem for the Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A278 (1975) 555-601. Zbl0306.35027MR385355
  6. [6] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II: The KdV-equation, Geom. Funct. Anal.3 (1993) 209-262. Zbl0787.35098MR1215780
  7. [7] Bourgain J., On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl.Special Issue (1995) 17-86. Zbl0891.35137MR1364878
  8. [8] Bourgain J., Periodic Korteweg–de Vries equation with measures as initial data, Selecta Math. (N.S.)3 (1997) 115-159. Zbl0891.35138MR1466164
  9. [9] Bourgain J., Global Solutions of Nonlinear Schrödinger Equations, Amer. Math. Soc. Colloq. Publ., American Mathematical Society, Providence, RI, 1999. Zbl0933.35178MR1691575
  10. [10] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on R and T , J. Amer. Math. Soc.16 (2003) 705-749. Zbl1025.35025MR1969209
  11. [11] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Local and global well-posedness for non-linear dispersive and wave equations, www.math.ucla.edu/~tao/Dispersive. Zbl1178.35345
  12. [12] Djakov P., Mityagin B., Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal.195 (2002) 89-128. Zbl1037.34080MR1934354
  13. [13] Djakov P., Mityagin B., Spectral triangles of Schrödinger operators with complex potentials, Selecta Math. (N.S.)9 (2003) 495-528. Zbl1088.34072MR2031750
  14. [14] Djakov P., Mityagin B., Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk61 (2006) 77-182, (in Russian). Zbl1128.47041MR2279044
  15. [15] Gasymov M.G., Spectral analysis of a class of second order nonselfadjoint differential operators, Funct. Anal. Appl.14 (1980) 14-19. Zbl0574.34012MR565091
  16. [16] Grébert B., Kappeler T., Pöschel J., A note on gaps of Hill's equation, Int. Math. Res. Not.50 (2004) 2703-2717. Zbl1082.34072MR2127368
  17. [17] Grujić Z., Kalisch H., Local well-posedness of the generalized Korteweg–de Vries equation in spaces of analytic functions, Differential Integral Equations15 (2002) 1325-1334. Zbl1031.35124MR1920689
  18. [18] Kappeler T., Makarov M., On the Birkhoff coordinates for KdV, Ann. Henri Poincaré2 (2001) 807-856. Zbl1017.76015MR1869523
  19. [19] Kappeler T., Mityagin B., Gap estimates of the spectrum of Hill's equation and action variables for KdV, Trans. Amer. Math. Soc.351 (1999) 619-646. Zbl0924.58074MR1473448
  20. [20] Kappeler T., Mityagin B., Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator, SIAM J. Math. Anal.33 (2001) 113-152. Zbl1097.34553MR1857991
  21. [21] Kappeler T., Pöschel J., KdV & KAM, Springer, Berlin, 2003. MR1997070
  22. [22] Kappeler T., Topalov P., Global wellposedness of KdV in H - 1 ( T , R ) , Duke Math. J.135 (2006) 327-360. Zbl1106.35081MR2267286
  23. [23] Kenig C.E., Ponce G., Vega L., On the Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J.71 (1993) 1-20. Zbl0787.35090MR1230283
  24. [24] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc.9 (1996) 573-603. Zbl0848.35114MR1329387
  25. [25] Kuksin S.B., Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its application to the Korteweg–de Vries equation, Mat. Sb.136 (1988), (in Russian). English translation in, Math. USSR Sb.64 (1989) 397-413. Zbl0678.58037MR959490
  26. [26] Kuksin S.B., Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Mathematics, vol. 1556, Springer, 1993. Zbl0784.58028MR1290785
  27. [27] Kuksin S.B., A Kam-theorem for equations of the Korteweg–de Vries type, Rev. Math. Phys.10 (1998) 1-64. Zbl0920.35135MR1754991
  28. [28] Kuksin S.B., Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000. Zbl0960.35001MR1857574
  29. [29] Marčenko V.A., Ostrowskiĭ I.O., A characterization of the spectrum of Hill's operator, Math. USSR Sb.97 (1975) 493-554. Zbl0343.34016
  30. [30] Polya G., Szegö G., Problems and Theorems in Analysis I, Springer, New York, 1976. Zbl0338.00001
  31. [31] J. Pöschel, Hill's potential in weighted Sobolev spaces and their spectral gaps, Preprint, http://www.poschel.de/pbl. 
  32. [32] Pöschel J., Trubowitz E., Inverse Spectral Theory, Academic Press, Boston, 1987. Zbl0623.34001MR894477
  33. [33] Sjöberg A., On the Korteweg–de Vries equation: Existence and uniqueness, J. Math. Anal. Appl.29 (1970) 569-579. Zbl0179.43101MR410135
  34. [34] Temam R., Sur un problème non linéaire, J. Math. Pures Appl.48 (1969) 159-172. Zbl0187.03902MR261183
  35. [35] Tkachenko V., Characterization of Hill operators with analytic potentials, Integral Equations Operator Theory41 (2001) 360-380. Zbl0994.34015MR1853676
  36. [36] Trubowitz E., The inverse problem for periodic potentials, Comm. Pure Appl. Math.30 (1977) 321-342. Zbl0403.34022MR430403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.