Forced vibrations of wave equations with non-monotone nonlinearities

Massimiliano Berti; Luca Biasco

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 4, page 439-474
  • ISSN: 0294-1449

How to cite

top

Berti, Massimiliano, and Biasco, Luca. "Forced vibrations of wave equations with non-monotone nonlinearities." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 439-474. <http://eudml.org/doc/78698>.

@article{Berti2006,
author = {Berti, Massimiliano, Biasco, Luca},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {wave equation; periodic solutions; variational methods; a priori estimates; Lyapunov-Schmidt reduction; Dirichlet boundary condition; completely resonant case},
language = {eng},
number = {4},
pages = {439-474},
publisher = {Elsevier},
title = {Forced vibrations of wave equations with non-monotone nonlinearities},
url = {http://eudml.org/doc/78698},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Berti, Massimiliano
AU - Biasco, Luca
TI - Forced vibrations of wave equations with non-monotone nonlinearities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 439
EP - 474
LA - eng
KW - wave equation; periodic solutions; variational methods; a priori estimates; Lyapunov-Schmidt reduction; Dirichlet boundary condition; completely resonant case
UR - http://eudml.org/doc/78698
ER -

References

top
  1. [1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on R n , Birkhäuser, in press. Zbl1115.35004MR2186962
  2. [2] Bambusi D., Paleari S., Families of periodic solutions of resonant PDEs, J. Nonlinear Sci.11 (1) (2001) 69-87. Zbl0994.37040MR1819863
  3. [3] Bartsch T., Ding Y.H., Lee C., Periodic solutions of a wave equation with concave and convex nonlinearities, J. Differential Equations153 (1) (1999) 121-141. Zbl0926.35013MR1682275
  4. [4] Berti M., Biasco L., Periodic solutions of nonlinear wave equations with non-monotone forcing terms, Rend. Mat. Acc. Naz. Lincei, s. 916 (2) (2005) 109-116. Zbl1225.35147MR2225505
  5. [5] Berti M., Bolle P., Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys.243 (2) (2003) 315-328. Zbl1072.35015MR2021909
  6. [6] Berti M., Bolle P., Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal.56 (2004) 1011-1046. Zbl1064.35119MR2038735
  7. [7] M. Berti, P. Bolle, Cantor families of periodic solution for completely resonant wave equations, Preprint SISSA, 2004. Zbl1160.35476MR2072952
  8. [8] Bourgain J., Periodic solutions of nonlinear wave equations, in: Harmonic Analysis and Partial Differential Equations, Chicago Lectures in Math., Univ. Chicago Press, 1999, pp. 69-97. Zbl0976.35041MR1743856
  9. [9] Brézis H., Coron J.-M., Nirenberg L., Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math.33 (5) (1980) 667-684. Zbl0484.35057MR586417
  10. [10] Brézis H., Nirenberg L., Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math.31 (1) (1978) 1-30. Zbl0378.35040MR470377
  11. [11] Coron J.-M., Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann.262 (2) (1983) 273-285. Zbl0489.35061MR690201
  12. [12] De Simon L., Torelli H., Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari, Rend. Sem. Mat. Univ. Padova40 (1968) 380-401. Zbl0198.13704MR228836
  13. [13] Gentile G., Mastropietro V., Procesi M., Periodic solutions for completely resonant nonlinear wave equations, Comm. Math. Phys.256 (2005) 437-490. Zbl1094.35021MR2160800
  14. [14] Hall W.S., On the existence of periodic solutions for the equations D t t u + ( - 1 ) p 0 e x 0 e x D x 2 p u = ϵ f ( · , · , u ) , J. Differential Equations7 (1970) 509-526. Zbl0198.14002MR265738
  15. [15] Hofer H., On the range of a wave operator with non-monotone nonlinearity, Math. Nachr.106 (1982) 327-340. Zbl0505.35058MR675766
  16. [16] Lovicarová H., Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J.19 (94) (1969) 324-342. Zbl0181.10901MR247249
  17. [17] Plotnikov P.I., Yungerman L.N., Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length, Differentsial'nye Uravneniya24 (9) (1988) 1599-1607, 1654 (in Russian); Translation in, Differential Equations24 (9) (1988) 1059-1065, (1989). Zbl0675.35058MR965608
  18. [18] Rabinowitz P., Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math.20 (1967) 145-205. Zbl0152.10003MR206507
  19. [19] Rabinowitz P., Time periodic solutions of nonlinear wave equations, Manuscripta Math.5 (1971) 165-194. Zbl0219.35062MR326179
  20. [20] Torelli G., Soluzioni periodiche dell’equazione non lineare u t t - u x x + ϵ F ( x , t , u ) = 0 , Rend. Istit. Mat. Univ. Trieste1 (1969) 123-137. Zbl0186.42903MR271520
  21. [21] Willem M., Density of the range of potential operators, Proc. Amer. Math. Soc.83 (2) (1981) 341-344. Zbl0478.49012MR624926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.