Forced vibrations of wave equations with non-monotone nonlinearities
Massimiliano Berti; Luca Biasco
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 4, page 439-474
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBerti, Massimiliano, and Biasco, Luca. "Forced vibrations of wave equations with non-monotone nonlinearities." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 439-474. <http://eudml.org/doc/78698>.
@article{Berti2006,
author = {Berti, Massimiliano, Biasco, Luca},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {wave equation; periodic solutions; variational methods; a priori estimates; Lyapunov-Schmidt reduction; Dirichlet boundary condition; completely resonant case},
language = {eng},
number = {4},
pages = {439-474},
publisher = {Elsevier},
title = {Forced vibrations of wave equations with non-monotone nonlinearities},
url = {http://eudml.org/doc/78698},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Berti, Massimiliano
AU - Biasco, Luca
TI - Forced vibrations of wave equations with non-monotone nonlinearities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 439
EP - 474
LA - eng
KW - wave equation; periodic solutions; variational methods; a priori estimates; Lyapunov-Schmidt reduction; Dirichlet boundary condition; completely resonant case
UR - http://eudml.org/doc/78698
ER -
References
top- [1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on , Birkhäuser, in press. Zbl1115.35004MR2186962
- [2] Bambusi D., Paleari S., Families of periodic solutions of resonant PDEs, J. Nonlinear Sci.11 (1) (2001) 69-87. Zbl0994.37040MR1819863
- [3] Bartsch T., Ding Y.H., Lee C., Periodic solutions of a wave equation with concave and convex nonlinearities, J. Differential Equations153 (1) (1999) 121-141. Zbl0926.35013MR1682275
- [4] Berti M., Biasco L., Periodic solutions of nonlinear wave equations with non-monotone forcing terms, Rend. Mat. Acc. Naz. Lincei, s. 916 (2) (2005) 109-116. Zbl1225.35147MR2225505
- [5] Berti M., Bolle P., Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys.243 (2) (2003) 315-328. Zbl1072.35015MR2021909
- [6] Berti M., Bolle P., Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal.56 (2004) 1011-1046. Zbl1064.35119MR2038735
- [7] M. Berti, P. Bolle, Cantor families of periodic solution for completely resonant wave equations, Preprint SISSA, 2004. Zbl1160.35476MR2072952
- [8] Bourgain J., Periodic solutions of nonlinear wave equations, in: Harmonic Analysis and Partial Differential Equations, Chicago Lectures in Math., Univ. Chicago Press, 1999, pp. 69-97. Zbl0976.35041MR1743856
- [9] Brézis H., Coron J.-M., Nirenberg L., Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math.33 (5) (1980) 667-684. Zbl0484.35057MR586417
- [10] Brézis H., Nirenberg L., Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math.31 (1) (1978) 1-30. Zbl0378.35040MR470377
- [11] Coron J.-M., Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann.262 (2) (1983) 273-285. Zbl0489.35061MR690201
- [12] De Simon L., Torelli H., Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari, Rend. Sem. Mat. Univ. Padova40 (1968) 380-401. Zbl0198.13704MR228836
- [13] Gentile G., Mastropietro V., Procesi M., Periodic solutions for completely resonant nonlinear wave equations, Comm. Math. Phys.256 (2005) 437-490. Zbl1094.35021MR2160800
- [14] Hall W.S., On the existence of periodic solutions for the equations , J. Differential Equations7 (1970) 509-526. Zbl0198.14002MR265738
- [15] Hofer H., On the range of a wave operator with non-monotone nonlinearity, Math. Nachr.106 (1982) 327-340. Zbl0505.35058MR675766
- [16] Lovicarová H., Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J.19 (94) (1969) 324-342. Zbl0181.10901MR247249
- [17] Plotnikov P.I., Yungerman L.N., Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length, Differentsial'nye Uravneniya24 (9) (1988) 1599-1607, 1654 (in Russian); Translation in, Differential Equations24 (9) (1988) 1059-1065, (1989). Zbl0675.35058MR965608
- [18] Rabinowitz P., Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math.20 (1967) 145-205. Zbl0152.10003MR206507
- [19] Rabinowitz P., Time periodic solutions of nonlinear wave equations, Manuscripta Math.5 (1971) 165-194. Zbl0219.35062MR326179
- [20] Torelli G., Soluzioni periodiche dell’equazione non lineare , Rend. Istit. Mat. Univ. Trieste1 (1969) 123-137. Zbl0186.42903MR271520
- [21] Willem M., Density of the range of potential operators, Proc. Amer. Math. Soc.83 (2) (1981) 341-344. Zbl0478.49012MR624926
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.