Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust
Bernard Bonnard; Jean-Baptiste Caillau
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 3, page 395-411
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBonnard, Bernard, and Caillau, Jean-Baptiste. "Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 395-411. <http://eudml.org/doc/78741>.
@article{Bonnard2007,
author = {Bonnard, Bernard, Caillau, Jean-Baptiste},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {orbit transfer; energy minimization; averaging; Riemannian approximation},
language = {eng},
number = {3},
pages = {395-411},
publisher = {Elsevier},
title = {Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust},
url = {http://eudml.org/doc/78741},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Bonnard, Bernard
AU - Caillau, Jean-Baptiste
TI - Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 395
EP - 411
LA - eng
KW - orbit transfer; energy minimization; averaging; Riemannian approximation
UR - http://eudml.org/doc/78741
ER -
References
top- [1] Allgower E.L., Georg K., Introduction to Numerical Continuation Methods, Classics Appl. Math., vol. 45, SIAM, Philadelphia, 2003. Zbl1036.65047MR2001018
- [2] Arnold V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. Zbl0386.70001MR690288
- [3] Bolsinov A., Fomenko A., Integrable Geodesics Flows on Two-Dimensional Surfaces, Kluwer, New York, 2000. Zbl1042.37042
- [4] Bonnard B., Caillau J.-B., Trélat E., Geometric optimal control of elliptic Keplerian orbits, Disc. Cont. Dyn. Syst. Ser. B5 (4) (2005) 929-956. Zbl1082.70014MR2170217
- [5] B. Bonnard, J.-B. Caillau, E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. Calc. Var., in press. Zbl1123.49014MR2306634
- [6] Bonnard B., Chyba M., Singular Trajectories and their Role in Optimal Control, Math. Appl., vol. 40, Springer-Verlag, Paris, 2003. Zbl1022.93003MR1996448
- [7] J.-B. Caillau, Contribution à l'étude du contrôle en temps minimal des transferts orbitaux, PhD thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, 2000.
- [8] Caillau J.-B., Gergaud J., Noailles J., Minimum time control of the Kepler equation, in: Blondel V., Megretski A. (Eds.), Unsolved Problems in Mathematical Systems and Control Theory, Princeton University Press, 2004, pp. 89-92. MR2083242
- [9] Chaplais F., Averaging and deterministic optimal control, SIAM J. Control Optim.25 (3) (1987) 767-780. Zbl0616.49019MR885198
- [10] Epenoy R., Geffroy S., Optimal low-thrust transfers with constraints: generalization of averaging techniques, Acta Astronaut.41 (3) (1997) 133-149.
- [11] Françoise J.-P., Oscillations en biologie : analyse qualitative et modèles, Math. Appl., vol. 46, Springer-Verlag, Paris, 2005. Zbl1080.37103MR2251236
- [12] S. Geffroy, Les techniques de moyennisation en contrôle optimal. Application aux transferts orbitaux à poussée continue, Master thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, 1994.
- [13] J. Gergaud, T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem, ESAIM Control Optim. Calc. Var., in press. Zbl1113.49032MR2209355
- [14] Kevorkian J., Cole J.D., Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981. Zbl0456.34001MR608029
- [15] Peng S.G., Analyse asymptotique et problème homogénéisé en contrôle optimal avec vibrations rapides, SIAM J. Control Optim.27 (4) (1989) 673-696. Zbl0688.49015MR1001914
- [16] Pontriaguine L. et al. , Théorie mathématiques des processus optimaux, Mir, Moscou, 1974. Zbl0289.49002MR358482
- [17] Zarrouati O., Trajectoires Spatiales, CNES–Cepadues, Toulouse, 1987.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.