Second order optimality conditions in the smooth case and applications in optimal control

Bernard Bonnard; Jean-Baptiste Caillau; Emmanuel Trélat

ESAIM: Control, Optimisation and Calculus of Variations (2007)

  • Volume: 13, Issue: 2, page 207-236
  • ISSN: 1292-8119

Abstract

top
The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate Times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. This algorithm involves both normal and abnormal cases.

How to cite

top

Bonnard, Bernard, Caillau, Jean-Baptiste, and Trélat, Emmanuel. "Second order optimality conditions in the smooth case and applications in optimal control." ESAIM: Control, Optimisation and Calculus of Variations 13.2 (2007): 207-236. <http://eudml.org/doc/249984>.

@article{Bonnard2007,
abstract = { The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate Times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. This algorithm involves both normal and abnormal cases. },
author = {Bonnard, Bernard, Caillau, Jean-Baptiste, Trélat, Emmanuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Conjugate point; second-order intrinsic derivative; Lagrangian singularity; Jacobi field; orbit transfer; attitude control; Conjugate points; Lagrangian singularity},
language = {eng},
month = {5},
number = {2},
pages = {207-236},
publisher = {EDP Sciences},
title = {Second order optimality conditions in the smooth case and applications in optimal control},
url = {http://eudml.org/doc/249984},
volume = {13},
year = {2007},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Caillau, Jean-Baptiste
AU - Trélat, Emmanuel
TI - Second order optimality conditions in the smooth case and applications in optimal control
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/5//
PB - EDP Sciences
VL - 13
IS - 2
SP - 207
EP - 236
AB - The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate Times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. This algorithm involves both normal and abnormal cases.
LA - eng
KW - Conjugate point; second-order intrinsic derivative; Lagrangian singularity; Jacobi field; orbit transfer; attitude control; Conjugate points; Lagrangian singularity
UR - http://eudml.org/doc/249984
ER -

References

top
  1. A.A. Agrachev and R.V. Gamkrelidze, Second order optimality condition for the time optimal problem. Matem. Sbornik100 (1976) 610–643. English transl. in: Math. USSR Sbornik29 (1976) 547–576.  
  2. A.A. Agrachev and R.V. Gamkrelidze, Symplectic geometry for optimal control, Nonlinear controllability and optimal control. Dekker, New York, Monogr. Textbooks Pure Appl. Math.133 (1990) 263–277.  Zbl0719.49023
  3. A.A. Agrachev and Yu.L. Sachkov, Control theory from the geometric viewpoint, Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin (2004) 412 pp.  
  4. A.A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. Henri Poincaré13 (1996) 635–690.  Zbl0866.58023
  5. A.A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems. J. Math. Syst. Estim. Cont.8 (1998) 87–118.  Zbl0826.49012
  6. C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 Programs. IEEE Comput. Sci. Engrg.3 (1996) 18–32.  
  7. O. Bolza, Calculus of variations. Chelsea Publishing Co., New York (1973).  Zbl19.0488.03
  8. B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem. SIAM J. Control Optim.29 (1991) 1300–1321.  Zbl0744.93033
  9. B. Bonnard and J.-B. Caillau, Introduction to nonlinear optimal control, in Advances Topics in Control Systems Theory, Lecture Notes from FAP 2004, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley Eds., Springer, Berlin (2005).  
  10. B. Bonnard and M. Chyba, The role of singular trajectories in control theory. Springer Verlag, New York (2003).  Zbl1022.93003
  11. B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal. Forum Math.5 (1993) 111–159.  
  12. B. Bonnard, J.-B. Caillau and E. Trélat, Geometric optimal control of elliptic Keplerian orbits. Discrete Contin. Dyn. Syst.5 (2005) 929–956.  Zbl1082.70014
  13. B. Bonnard, J.-B. Caillau and E. Trélat, Cotcot: short reference manual, ENSEEIHT-IRIT Technical Report RT/APO/05/1 (2005) www.n7.fr/apo/cotcot.  
  14. J.B. Caillau, J. Noailles and J. Gergaud, 3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust. J. Opt. Theory Appl.118 (2003) 541–565.  Zbl1066.70016
  15. Y. Chitour, F. Jean and E. Trélat, Genericity results for singular trajectories. J. Diff. Geom.73 (2006) 45–73.  Zbl1102.53019
  16. J. de Morant, Contrôle en temps minimal des réacteurs chimiques discontinus. Ph.D. Thesis, Univ. Rouen (1992).  
  17. S. Galot, D. Hulin and J. Lafontaine, Riemannian geometry. Springer-Verlag, Berlin (1987).  
  18. B.S. Goh, Necessary conditions for singular extremals involving multiple control variables. SIAM J. Cont.4 (1966) 716–731.  Zbl0161.29004
  19. M.R. Hestenes, Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations. Pac. J. Math.1 (1951) 525–582.  Zbl0045.20806
  20. M.R. Hestenes, Optimization theory – the finite dimensional case. Wiley (1975).  Zbl0327.90015
  21. A.D. Ioffe and V.M. Tikhomirov, Theory of extremal problems. North-Holland Publishing Co., Amsterdam (1979).  
  22. H.J. Kelley, R. Kopp and H.G. Moyer, Singular extremals, in Topics in optimization, G. Leitman Ed., Academic Press, New York (1967) 63–101.  
  23. A.J. Krener, The high-order maximum principle and its applications to singular extremals. SIAM J. Cont. Opt.15 (1977) 256–293.  Zbl0354.49008
  24. L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The mathematical theory of optimal processes. Wiley Interscience (1962).  
  25. A.V. Sarychev, The index of second variation of a control system. Matem. Sbornik113 (1980) 464–486. English transl. in: Math. USSR Sbornik41 (1982) 383–401.  
  26. L.F. Shampine, H.A. Watts and S. Davenport, Solving non-stiff ordinary differential equations – the state of the art. Technical Report sand75-0182, Sandia Laboratories, Albuquerque, New Mexico (1975).  Zbl0349.65042
  27. E. Trélat, Asymptotics of accessibility sets along an abnormal trajectory. ESAIM: COCV6 (2001) 387–414.  Zbl0996.93009
  28. L.C. Young, Lectures on the calculus of variations and optimal control theory. Chelsea, New York (1980).  
  29. O. Zarrouati, Trajectoires spatiales. CNES-Cepadues, Toulouse (1987).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.