Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data

Baoxiang Wang; Lijia Han; Chunyan Huang

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2253-2281
  • ISSN: 0294-1449

How to cite

top

Wang, Baoxiang, Han, Lijia, and Huang, Chunyan. "Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2253-2281. <http://eudml.org/doc/78933>.

@article{Wang2009,
author = {Wang, Baoxiang, Han, Lijia, Huang, Chunyan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {derivative nonlinear Schrödinger equation; scattering; global well posedness; small rough data; modulation spaces},
language = {eng},
number = {6},
pages = {2253-2281},
publisher = {Elsevier},
title = {Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data},
url = {http://eudml.org/doc/78933},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Wang, Baoxiang
AU - Han, Lijia
AU - Huang, Chunyan
TI - Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2253
EP - 2281
LA - eng
KW - derivative nonlinear Schrödinger equation; scattering; global well posedness; small rough data; modulation spaces
UR - http://eudml.org/doc/78933
ER -

References

top
  1. [1] Bergh J., Löfström J., Interpolation Spaces, Springer-Verlag, 1976. Zbl0344.46071
  2. [2] Bejenaru I., Tataru D., Large data local solutions for the derivative NLS equation, arXiv:math.AP/0610092v1. Zbl1250.35160MR2443925
  3. [3] Chihara H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. Res. Inst. Math. Sci.31 (1995) 731-753. Zbl0847.35126MR1367670
  4. [4] Chihara H., The initial value problem for cubic semilinear Schrödinger equations with gauge invariance, Publ. Res. Inst. Math. Sci.32 (1996) 445-471. Zbl0870.35095MR1409797
  5. [5] Christ M., Illposedness of a Schrödinger equation with derivative regularity, preprint, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.1363&rep=rep1&type=pdf. 
  6. [6] Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal.179 (2001) 406-425. Zbl0974.47025MR1809116
  7. [7] Constantin P., Saut J.C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1988) 413-446. Zbl0667.35061MR928265
  8. [8] Clarkson P.A., Tuszynski J.A., Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality, J. Phys. A: Math. Gen.23 (1990) 4269-4288. Zbl0738.35090MR1076904
  9. [9] Ding Wei-Yue, Wang You-De, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A41 (1998) 746-755. Zbl0918.53017MR1633799
  10. [10] Dixon J.M., Tuszynski J.A., Coherent structures in strongly interacting many-body systems: II. Classical solutions and quantum fluctuations, J. Phys. A: Math. Gen.22 (1989) 4895-4920. Zbl0714.70021MR1023510
  11. [11] H.G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and Applications, New Delhi Allied Publishers, India, 2003, pp. 99–140, http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf. 
  12. [12] Ionescu A., Kenig C.E., Low-regularity Schrödinger maps, II: Global well posedness in dimensions d 3 , Comm. Math. Phys.271 (2007) 523-559, arXiv:math/0605209v1. Zbl1137.35068MR2287916
  13. [13] Kenig C.E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J.40 (1991) 253-288. Zbl0738.35022MR1101221
  14. [14] Kenig C.E., Ponce G., Vega L., Small solutions to nonlinear Schrodinger equation, Ann. Inst. H. Poincaré Sect. C10 (1993) 255-288. Zbl0786.35121MR1230709
  15. [15] Kenig C.E., Ponce G., Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math.134 (1998) 489-545. Zbl0928.35158MR1660933
  16. [16] Kenig C.E., Ponce G., Vega L., The Cauchy problem for quasi-linear Schrodinger equations, Invent. Math.158 (2004) 343-388. Zbl1177.35221MR2096797
  17. [17] Kenig C.E., Ponce G., Rolvent C., Vega L., The genereal quasilinear untrahyperbolic Schrodinger equation, Adv. Math.206 (2006) 402-433. Zbl1122.35137MR2263709
  18. [18] Klainerman S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Ration. Mech. Anal.78 (1982) 73-98. Zbl0502.35015MR654553
  19. [19] Klainerman S., Ponce G., Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math.36 (1983) 133-141. Zbl0509.35009MR680085
  20. [20] Linares F., Ponce G., On the Davey–Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 523-548. Zbl0807.35136MR1249105
  21. [21] Molinet L., Ribaud F., Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl.83 (2004) 277-311. Zbl1084.35094MR2038121
  22. [22] Ozawa T., Zhai J., Global existence of small classical solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire25 (2008) 303-311. Zbl1143.35370MR2396524
  23. [23] Shatah J., Global existence of small classical solutions to nonlinear evolution equations, J. Differential Equations46 (1982) 409-423. Zbl0518.35046MR681231
  24. [24] Sjölin P., Regularity of solutions to the Schrödinger equations, Duke Math. J.55 (1987) 699-715. Zbl0631.42010MR904948
  25. [25] Smith H.F., Sogge C.D., Global Strichartz estimates for nontrapping perturbations of Laplacian, Comm. Partial Differential Equations25 (2000) 2171-2183. Zbl0972.35014MR1789924
  26. [26] Sugimoto M., Tomita N., The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal.248 (2007) 79-106. Zbl1124.42018MR2329683
  27. [27] Tuszynski J.A., Dixon J.M., Coherent structures in strongly interacting many-body systems: I. Derivation of dynamics, J. Phys. A: Math. Gen.22 (1989) 4877-4894. Zbl0714.70020MR1023509
  28. [28] Toft J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal.207 (2004) 399-429. Zbl1083.35148MR2032995
  29. [29] Triebel H., Theory of Function Spaces, Birkhäuser-Verlag, 1983. Zbl0546.46027MR781540
  30. [30] Wang B.X., Zhao L.F., Guo B.L., Isometric decomposition operators, function spaces E p , q λ and applications to nonlinear evolution equations, J. Funct. Anal.233 (2006) 1-39. Zbl1099.46023MR2204673
  31. [31] Wang B.X., Hudzik H., The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations231 (2007) 36-73. Zbl1121.35132MR2281189
  32. [32] Wang B.X., Huang C.Y., Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations239 (2007) 213-250. Zbl1219.35289MR2341554
  33. [33] Wang B.X., Wang Y.Z., Global well posedness and scattering for the elliptic and non-elliptic derivative nonlinear Schrödinger equations with small data, preprint, arXiv:0803.2634. 
  34. [34] Vega L., The Schrödinger equation: Pointwise convergence to the initial data, Proc. Amer. Math. Soc.102 (1988) 874-878. Zbl0654.42014MR934859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.