Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data
Baoxiang Wang; Lijia Han; Chunyan Huang
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2253-2281
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWang, Baoxiang, Han, Lijia, and Huang, Chunyan. "Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2253-2281. <http://eudml.org/doc/78933>.
@article{Wang2009,
author = {Wang, Baoxiang, Han, Lijia, Huang, Chunyan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {derivative nonlinear Schrödinger equation; scattering; global well posedness; small rough data; modulation spaces},
language = {eng},
number = {6},
pages = {2253-2281},
publisher = {Elsevier},
title = {Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data},
url = {http://eudml.org/doc/78933},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Wang, Baoxiang
AU - Han, Lijia
AU - Huang, Chunyan
TI - Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2253
EP - 2281
LA - eng
KW - derivative nonlinear Schrödinger equation; scattering; global well posedness; small rough data; modulation spaces
UR - http://eudml.org/doc/78933
ER -
References
top- [1] Bergh J., Löfström J., Interpolation Spaces, Springer-Verlag, 1976. Zbl0344.46071
- [2] Bejenaru I., Tataru D., Large data local solutions for the derivative NLS equation, arXiv:math.AP/0610092v1. Zbl1250.35160MR2443925
- [3] Chihara H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. Res. Inst. Math. Sci.31 (1995) 731-753. Zbl0847.35126MR1367670
- [4] Chihara H., The initial value problem for cubic semilinear Schrödinger equations with gauge invariance, Publ. Res. Inst. Math. Sci.32 (1996) 445-471. Zbl0870.35095MR1409797
- [5] Christ M., Illposedness of a Schrödinger equation with derivative regularity, preprint, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.1363&rep=rep1&type=pdf.
- [6] Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal.179 (2001) 406-425. Zbl0974.47025MR1809116
- [7] Constantin P., Saut J.C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1988) 413-446. Zbl0667.35061MR928265
- [8] Clarkson P.A., Tuszynski J.A., Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality, J. Phys. A: Math. Gen.23 (1990) 4269-4288. Zbl0738.35090MR1076904
- [9] Ding Wei-Yue, Wang You-De, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A41 (1998) 746-755. Zbl0918.53017MR1633799
- [10] Dixon J.M., Tuszynski J.A., Coherent structures in strongly interacting many-body systems: II. Classical solutions and quantum fluctuations, J. Phys. A: Math. Gen.22 (1989) 4895-4920. Zbl0714.70021MR1023510
- [11] H.G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and Applications, New Delhi Allied Publishers, India, 2003, pp. 99–140, http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf.
- [12] Ionescu A., Kenig C.E., Low-regularity Schrödinger maps, II: Global well posedness in dimensions , Comm. Math. Phys.271 (2007) 523-559, arXiv:math/0605209v1. Zbl1137.35068MR2287916
- [13] Kenig C.E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J.40 (1991) 253-288. Zbl0738.35022MR1101221
- [14] Kenig C.E., Ponce G., Vega L., Small solutions to nonlinear Schrodinger equation, Ann. Inst. H. Poincaré Sect. C10 (1993) 255-288. Zbl0786.35121MR1230709
- [15] Kenig C.E., Ponce G., Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math.134 (1998) 489-545. Zbl0928.35158MR1660933
- [16] Kenig C.E., Ponce G., Vega L., The Cauchy problem for quasi-linear Schrodinger equations, Invent. Math.158 (2004) 343-388. Zbl1177.35221MR2096797
- [17] Kenig C.E., Ponce G., Rolvent C., Vega L., The genereal quasilinear untrahyperbolic Schrodinger equation, Adv. Math.206 (2006) 402-433. Zbl1122.35137MR2263709
- [18] Klainerman S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Ration. Mech. Anal.78 (1982) 73-98. Zbl0502.35015MR654553
- [19] Klainerman S., Ponce G., Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math.36 (1983) 133-141. Zbl0509.35009MR680085
- [20] Linares F., Ponce G., On the Davey–Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 523-548. Zbl0807.35136MR1249105
- [21] Molinet L., Ribaud F., Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl.83 (2004) 277-311. Zbl1084.35094MR2038121
- [22] Ozawa T., Zhai J., Global existence of small classical solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire25 (2008) 303-311. Zbl1143.35370MR2396524
- [23] Shatah J., Global existence of small classical solutions to nonlinear evolution equations, J. Differential Equations46 (1982) 409-423. Zbl0518.35046MR681231
- [24] Sjölin P., Regularity of solutions to the Schrödinger equations, Duke Math. J.55 (1987) 699-715. Zbl0631.42010MR904948
- [25] Smith H.F., Sogge C.D., Global Strichartz estimates for nontrapping perturbations of Laplacian, Comm. Partial Differential Equations25 (2000) 2171-2183. Zbl0972.35014MR1789924
- [26] Sugimoto M., Tomita N., The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal.248 (2007) 79-106. Zbl1124.42018MR2329683
- [27] Tuszynski J.A., Dixon J.M., Coherent structures in strongly interacting many-body systems: I. Derivation of dynamics, J. Phys. A: Math. Gen.22 (1989) 4877-4894. Zbl0714.70020MR1023509
- [28] Toft J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal.207 (2004) 399-429. Zbl1083.35148MR2032995
- [29] Triebel H., Theory of Function Spaces, Birkhäuser-Verlag, 1983. Zbl0546.46027MR781540
- [30] Wang B.X., Zhao L.F., Guo B.L., Isometric decomposition operators, function spaces and applications to nonlinear evolution equations, J. Funct. Anal.233 (2006) 1-39. Zbl1099.46023MR2204673
- [31] Wang B.X., Hudzik H., The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations231 (2007) 36-73. Zbl1121.35132MR2281189
- [32] Wang B.X., Huang C.Y., Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations239 (2007) 213-250. Zbl1219.35289MR2341554
- [33] Wang B.X., Wang Y.Z., Global well posedness and scattering for the elliptic and non-elliptic derivative nonlinear Schrödinger equations with small data, preprint, arXiv:0803.2634.
- [34] Vega L., The Schrödinger equation: Pointwise convergence to the initial data, Proc. Amer. Math. Soc.102 (1988) 874-878. Zbl0654.42014MR934859
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.