Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation

Kwangseok Choe; Namkwon Kim

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 313-338
  • ISSN: 0294-1449

How to cite

top

Choe, Kwangseok, and Kim, Namkwon. "Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 313-338. <http://eudml.org/doc/78791>.

@article{Choe2008,
author = {Choe, Kwangseok, Kim, Namkwon},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Chern-Simons-Higgs vortex equation; blow-up solutions; flat torus; periodic configuration of vortices},
language = {eng},
number = {2},
pages = {313-338},
publisher = {Elsevier},
title = {Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation},
url = {http://eudml.org/doc/78791},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Choe, Kwangseok
AU - Kim, Namkwon
TI - Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 313
EP - 338
LA - eng
KW - Chern-Simons-Higgs vortex equation; blow-up solutions; flat torus; periodic configuration of vortices
UR - http://eudml.org/doc/78791
ER -

References

top
  1. [1] Bartolucci D., Chen C.-C., Lin C.-S., Tarantello G., Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations29 (2004) 1241-1265. Zbl1062.35146MR2097983
  2. [2] Bartolucci D., Tarantello G., Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys.229 (2002) 3-47. Zbl1009.58011MR1917672
  3. [3] Bates P., Fife P.C., The dynamics of nucleation for the Cahn–Hilliard equation, SIAM J. Appl. Math.53 (1993) 990-1008. Zbl0788.35061MR1232163
  4. [4] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of - Δ u = V e u in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
  5. [5] Caffarelli L.A., Yang Y., Vortex condensation in the Chern–Simons–Higgs model: an existence theorem, Comm. Math. Phys.168 (1995) 321-336. Zbl0846.58063MR1324400
  6. [6] Chae D., Imanuvilov O.Y., The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys.215 (2000) 119-142. Zbl1002.58015MR1800920
  7. [7] Chan H., Fu C.-C., Lin C.-S., Non-topological multivortex solutions to the self-dual Chern–Simons–Higgs equation, Comm. Math. Phys.231 (2002) 189-221. Zbl1018.58008MR1946331
  8. [8] Chen C.-C., Lin C.-S., Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math.55 (2002) 728-771. Zbl1040.53046MR1885666
  9. [9] Chen C.-C., Lin C.-S., Wang G., Concentration phenomena of two-vortex solutions in a Chern–Simons model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)III (2004) 369-397. Zbl1170.35413MR2075988
  10. [10] Chen X., Hastings S., McLeod J.B., Yang Y., A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. Lond. A446 (1994) 453-478. Zbl0813.35015MR1297740
  11. [11] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
  12. [12] Chen W., Li C., Qualitative properties of solutions to some nonlinear elliptic equations in R 2 , Duke Math. J.71 (1993) 427-439. Zbl0923.35055MR1233443
  13. [13] Choe K., Uniqueness of the topological multivortex solution in the self-dual Chern–Simons theory, J. Math. Phys.46 (1) (2005) 012305. Zbl1076.58012MR2113759
  14. [14] Ding W., Jost J., Li J., Peng X., Wang G., Self duality equations for Ginzburg–Landau and Seiberg–Witten type functionals with 6th order potentials, Comm. Math. Phys.217 (2001) 383-407. Zbl0994.58009MR1821229
  15. [15] Ding W., Jost J., Li J., Wang G., An analysis of the two-vortex case in the Chern–Simons–Higgs model, Calc. Var. Partial Differential Equations7 (1998) 87-97. Zbl0928.58021MR1624438
  16. [16] Han J., Asymptotics for the vortex condensate solutions in Chern–Simons–Higgs theory, Asymptotic Anal.28 (2001) 31-48. Zbl0997.35008MR1865569
  17. [17] Han J., Asymptotic limit for condensate solutions in the Abelian Chern–Simons–Higgs model, Proc. Amer. Math. Soc.131 (2003) 1839-1845. Zbl1036.35034MR1955272
  18. [18] Han J., Asymptotic limit for condensate solutions in the Abelian Chern–Simons–Higgs model II, Proc. Amer. Math. Soc.131 (2003) 3827-3832. Zbl1037.35022MR1999930
  19. [19] Hong J., Kim Y., Pac P.Y., Multivortex solutions of the Abelian Chern–Simons–Higgs theory, Phys. Rev. Lett.64 (1990) 2230-2233. Zbl1014.58500MR1050529
  20. [20] Jackiw R., Weinberg E.J., Self-dual Chern–Simons vortices, Phys. Rev. Lett.64 (1990) 2234-2237. Zbl1050.81595MR1050530
  21. [21] Li Y., Harnack type inequality: the method of moving planes, Comm. Math. Phys.200 (1999) 421-444. Zbl0928.35057MR1673972
  22. [22] Li Y., Shafrir I., Blow-up analysis for solutions of - Δ u = V e u in dimension two, Indiana Univ. Math. J.43 (1994) 1255-1270. Zbl0842.35011MR1322618
  23. [23] Ni W., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.44 (1991) 819-851. Zbl0754.35042MR1115095
  24. [24] Nolasco M., Tarantello G., On a sharp type inequality on two dimensional compact manifolds, Arch. Rational Mech. Anal.145 (1998) 161-195. Zbl0980.46022MR1664542
  25. [25] Nolasco M., Tarantello G., Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differential Equations9 (1999) 31-94. Zbl0951.58030MR1710938
  26. [26] Prajapat J., Tarantello G., On a class of elliptic problems in R 2 : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 967-985. Zbl1009.35018MR1855007
  27. [27] Spruck J., Yang Y., The existence of non-topological solitons in the self-dual Chern–Simons theory, Comm. Math. Phys.149 (1992) 361-376. Zbl0760.53063MR1186034
  28. [28] Tarantello G., Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys.37 (1996) 3769-3796. Zbl0863.58081MR1400816
  29. [29] Wang R., The existence of Chern–Simons vortices, Comm. Math. Phys.137 (1991) 587-597. Zbl0733.58009MR1105432
  30. [30] Wang S., Yang Y., Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal.23 (1992) 1125-1140. Zbl0753.35111MR1177781
  31. [31] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (4) (1998) 459-492. Zbl0910.35049MR1632937
  32. [32] Yang Y., Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001. Zbl0982.35003MR1838682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.