Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation

Kwangseok Choe; Namkwon Kim

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 313-338
  • ISSN: 0294-1449

How to cite

top

Choe, Kwangseok, and Kim, Namkwon. "Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 313-338. <http://eudml.org/doc/78791>.

@article{Choe2008,
author = {Choe, Kwangseok, Kim, Namkwon},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Chern-Simons-Higgs vortex equation; blow-up solutions; flat torus; periodic configuration of vortices},
language = {eng},
number = {2},
pages = {313-338},
publisher = {Elsevier},
title = {Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation},
url = {http://eudml.org/doc/78791},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Choe, Kwangseok
AU - Kim, Namkwon
TI - Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 313
EP - 338
LA - eng
KW - Chern-Simons-Higgs vortex equation; blow-up solutions; flat torus; periodic configuration of vortices
UR - http://eudml.org/doc/78791
ER -

References

top
  1. [1] Bartolucci D., Chen C.-C., Lin C.-S., Tarantello G., Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations29 (2004) 1241-1265. Zbl1062.35146MR2097983
  2. [2] Bartolucci D., Tarantello G., Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys.229 (2002) 3-47. Zbl1009.58011MR1917672
  3. [3] Bates P., Fife P.C., The dynamics of nucleation for the Cahn–Hilliard equation, SIAM J. Appl. Math.53 (1993) 990-1008. Zbl0788.35061MR1232163
  4. [4] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
  5. [5] Caffarelli L.A., Yang Y., Vortex condensation in the Chern–Simons–Higgs model: an existence theorem, Comm. Math. Phys.168 (1995) 321-336. Zbl0846.58063MR1324400
  6. [6] Chae D., Imanuvilov O.Y., The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys.215 (2000) 119-142. Zbl1002.58015MR1800920
  7. [7] Chan H., Fu C.-C., Lin C.-S., Non-topological multivortex solutions to the self-dual Chern–Simons–Higgs equation, Comm. Math. Phys.231 (2002) 189-221. Zbl1018.58008MR1946331
  8. [8] Chen C.-C., Lin C.-S., Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math.55 (2002) 728-771. Zbl1040.53046MR1885666
  9. [9] Chen C.-C., Lin C.-S., Wang G., Concentration phenomena of two-vortex solutions in a Chern–Simons model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)III (2004) 369-397. Zbl1170.35413MR2075988
  10. [10] Chen X., Hastings S., McLeod J.B., Yang Y., A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. Lond. A446 (1994) 453-478. Zbl0813.35015MR1297740
  11. [11] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
  12. [12] Chen W., Li C., Qualitative properties of solutions to some nonlinear elliptic equations in , Duke Math. J.71 (1993) 427-439. Zbl0923.35055MR1233443
  13. [13] Choe K., Uniqueness of the topological multivortex solution in the self-dual Chern–Simons theory, J. Math. Phys.46 (1) (2005) 012305. Zbl1076.58012MR2113759
  14. [14] Ding W., Jost J., Li J., Peng X., Wang G., Self duality equations for Ginzburg–Landau and Seiberg–Witten type functionals with 6th order potentials, Comm. Math. Phys.217 (2001) 383-407. Zbl0994.58009MR1821229
  15. [15] Ding W., Jost J., Li J., Wang G., An analysis of the two-vortex case in the Chern–Simons–Higgs model, Calc. Var. Partial Differential Equations7 (1998) 87-97. Zbl0928.58021MR1624438
  16. [16] Han J., Asymptotics for the vortex condensate solutions in Chern–Simons–Higgs theory, Asymptotic Anal.28 (2001) 31-48. Zbl0997.35008MR1865569
  17. [17] Han J., Asymptotic limit for condensate solutions in the Abelian Chern–Simons–Higgs model, Proc. Amer. Math. Soc.131 (2003) 1839-1845. Zbl1036.35034MR1955272
  18. [18] Han J., Asymptotic limit for condensate solutions in the Abelian Chern–Simons–Higgs model II, Proc. Amer. Math. Soc.131 (2003) 3827-3832. Zbl1037.35022MR1999930
  19. [19] Hong J., Kim Y., Pac P.Y., Multivortex solutions of the Abelian Chern–Simons–Higgs theory, Phys. Rev. Lett.64 (1990) 2230-2233. Zbl1014.58500MR1050529
  20. [20] Jackiw R., Weinberg E.J., Self-dual Chern–Simons vortices, Phys. Rev. Lett.64 (1990) 2234-2237. Zbl1050.81595MR1050530
  21. [21] Li Y., Harnack type inequality: the method of moving planes, Comm. Math. Phys.200 (1999) 421-444. Zbl0928.35057MR1673972
  22. [22] Li Y., Shafrir I., Blow-up analysis for solutions of in dimension two, Indiana Univ. Math. J.43 (1994) 1255-1270. Zbl0842.35011MR1322618
  23. [23] Ni W., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.44 (1991) 819-851. Zbl0754.35042MR1115095
  24. [24] Nolasco M., Tarantello G., On a sharp type inequality on two dimensional compact manifolds, Arch. Rational Mech. Anal.145 (1998) 161-195. Zbl0980.46022MR1664542
  25. [25] Nolasco M., Tarantello G., Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differential Equations9 (1999) 31-94. Zbl0951.58030MR1710938
  26. [26] Prajapat J., Tarantello G., On a class of elliptic problems in : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 967-985. Zbl1009.35018MR1855007
  27. [27] Spruck J., Yang Y., The existence of non-topological solitons in the self-dual Chern–Simons theory, Comm. Math. Phys.149 (1992) 361-376. Zbl0760.53063MR1186034
  28. [28] Tarantello G., Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys.37 (1996) 3769-3796. Zbl0863.58081MR1400816
  29. [29] Wang R., The existence of Chern–Simons vortices, Comm. Math. Phys.137 (1991) 587-597. Zbl0733.58009MR1105432
  30. [30] Wang S., Yang Y., Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal.23 (1992) 1125-1140. Zbl0753.35111MR1177781
  31. [31] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (4) (1998) 459-492. Zbl0910.35049MR1632937
  32. [32] Yang Y., Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001. Zbl0982.35003MR1838682

NotesEmbed ?

top

You must be logged in to post comments.