A characterization of convex calibrable sets in with respect to anisotropic norms
V. Caselles; A. Chambolle; S. Moll; M. Novaga
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 4, page 803-832
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCaselles, V., et al. "A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 803-832. <http://eudml.org/doc/78812>.
@article{Caselles2008,
author = {Caselles, V., Chambolle, A., Moll, S., Novaga, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calibrable sets; convex sets; mean curvature; total variation},
language = {eng},
number = {4},
pages = {803-832},
publisher = {Elsevier},
title = {A characterization of convex calibrable sets in $\{R\}^\{N\}$ with respect to anisotropic norms},
url = {http://eudml.org/doc/78812},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Caselles, V.
AU - Chambolle, A.
AU - Moll, S.
AU - Novaga, M.
TI - A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 803
EP - 832
LA - eng
KW - calibrable sets; convex sets; mean curvature; total variation
UR - http://eudml.org/doc/78812
ER -
References
top- [1] F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Preprint CVGMT, Scuola Normale di Pisa, 2007. Zbl1167.52005MR2358032
- [2] Alter F., Caselles V., Chambolle A., A characterization of convex calibrable sets in , Math. Ann.332 (2) (2005) 329-366. Zbl1108.35073MR2178065
- [3] Alter F., Caselles V., Chambolle A., Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, Interfaces Free Bound.7 (1) (2005) 29-53. Zbl1084.49003MR2126142
- [4] Amar M., Bellettini G., A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1) (1994) 91-133. Zbl0842.49016MR1259102
- [5] Ambrosio L., Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5)19 (1995) 191-246. Zbl0957.49029MR1387558
- [6] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
- [7] Andreu F., Ballester C., Caselles V., Mazón J.M., The Dirichlet problem for the total variation flow, J. Funct. Anal.180 (2) (2001) 347-403. Zbl0973.35109MR1814993
- [8] Andreu F., Caselles V., Mazón J.M., A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana18 (1) (2002) 135-185. Zbl1010.35063MR1924690
- [9] Andreu-Vaillo F., Caselles V., Mazón J.M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, vol. 223, Birkhäuser Verlag, Basel, 2004. Zbl1053.35002MR2033382
- [10] Anzellotti G., Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4)135 (1984) 293-318, 1983. Zbl0572.46023MR750538
- [11] Atkinson F.V., Peletier L.A., Bounds for vertical points of solutions of prescribed mean curvature type equations. I, Proc. Roy. Soc. Edinburgh Sect. A112 (1–2) (1989) 15-32. Zbl0685.35022MR1007535
- [12] Barozzi E., The curvature of a set with finite area, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.5 (2) (1994) 149-159. Zbl0809.49038MR1292570
- [13] Bellettini G., Caselles V., Chambolle A., Novaga M., Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal.179 (1) (2006) 109-152. Zbl1148.53049MR2208291
- [14] Bellettini G., Caselles V., Novaga M., The total variation flow in , J. Differential Equations184 (2) (2002) 475-525. Zbl1036.35099MR1929886
- [15] Bellettini G., Novaga M., Approximation and comparison for nonsmooth anisotropic motion by mean curvature in , Math. Models Methods Appl. Sci.10 (1) (2000) 1-10. Zbl1016.53048MR1749692
- [16] Bellettini G., Novaga M., Paolini M., Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces Free Bound.1 (1) (1999) 39-55. Zbl0934.49023MR1865105
- [17] Bellettini G., Novaga M., Paolini M., Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound.3 (4) (2001) 415-446. Zbl0989.35127MR1869587
- [18] Bellettini G., Novaga M., Paolini M., On a crystalline variational problem. I. First variation and global regularity, Arch. Ration. Mech. Anal.157 (3) (2001) 165-191. Zbl0976.58016MR1826964
- [19] Bellettini G., Novaga M., Paolini M., On a crystalline variational problem. II. BV regularity and structure of minimizers on facets, Arch. Ration. Mech. Anal.157 (3) (2001) 193-217. Zbl0976.58017MR1826965
- [20] Bellettini G., Paolini M., Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J.25 (3) (1996) 537-566. Zbl0873.53011MR1416006
- [21] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, vol. 5, North-Holland Publishing Co., Amsterdam, 1973, Notas de Matemática (50). Zbl0252.47055MR348562
- [22] Brézis H., Kinderlehrer D., The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J.23 (1973/1974) 831-844. Zbl0278.49011MR361436
- [23] Caselles V., Chambolle A., Anisotropic curvature-driven flow of convex sets, Nonlinear Anal.65 (8) (2006) 1547-1577. Zbl1107.35069MR2248685
- [24] Caselles V., Chambolle A., Novaga M., Uniqueness of the Cheeger set of a convex body, Pacific J. Math.232 (1) (2007) 77-90. Zbl1221.35171MR2358032
- [25] Chambolle A., An algorithm for mean curvature motion, Interfaces Free Bound.6 (2) (2004) 195-218. Zbl1061.35147MR2079603
- [26] Chambolle A., An algorithm for total variation minimization and applications, J. Math. Imaging Vision20 (1–2) (2004) 89-97, Special issue on mathematics and image analysis. MR2049783
- [27] Giusti E., On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math.46 (2) (1978) 111-137. Zbl0381.35035MR487722
- [28] Gonzalez E.H.A., Massari U., Variational mean curvatures, Rend. Sem. Mat. Univ. Politec. Torino52 (1) (1994) 1-28. Zbl0819.49025MR1289900
- [29] Kawohl B., Fridman V., Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin.44 (4) (2003) 659-667. Zbl1105.35029MR2062882
- [30] Kawohl B., Lachand-Robert T., Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math.225 (1) (2006) 103-118. Zbl1133.52002MR2233727
- [31] Korevaar N., Capillary surface convexity above convex domains, Indiana Univ. Math. J.32 (1) (1983) 73-81. Zbl0481.35023MR684757
- [32] Korevaar N., Simon L., Equations of mean curvature type with contact angle boundary conditions, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 175-201. Zbl0932.35091MR1449407
- [33] Lichnewsky A., Temam R., Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations30 (3) (1978) 340-364. Zbl0368.49016MR521858
- [34] Meyer Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, American Mathematical Society, Providence, RI, 2001, The fifteenth Dean Jacqueline B. Lewis memorial lectures. Zbl0987.35003MR1852741
- [35] Moll J.S., The anisotropic total variation flow, Math. Ann.332 (1) (2005) 177-218. Zbl1109.35061MR2139257
- [36] Rosales C., Isoperimetric regions in rotationally symmetric convex bodies, Indiana Univ. Math. J.52 (5) (2003) 1201-1214. Zbl1088.53039MR2010323
- [37] Schneider R., Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. Zbl0798.52001MR1216521
- [38] Simon L., Spruck J., Existence and regularity of a capillary surface with prescribed contact angle, Arch. Ration. Mech. Anal.61 (1) (1976) 19-34. Zbl0361.35014MR487724
- [39] Stredulinsky E., Ziemer W.P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal.7 (4) (1997) 653-677. Zbl0940.49025MR1669207
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.