A variational approach to the local character of -closure : the convex case
Jean-François Babadjian; Marco Barchiesi
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 351-373
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBabadjian, Jean-François, and Barchiesi, Marco. "A variational approach to the local character of $G$-closure : the convex case." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 351-373. <http://eudml.org/doc/78846>.
@article{Babadjian2009,
author = {Babadjian, Jean-François, Barchiesi, Marco},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-convergence; quasiconvexity; polyconvexity; Young measure; two-scale convergence; cell integrands; counter-examples},
language = {eng},
number = {2},
pages = {351-373},
publisher = {Elsevier},
title = {A variational approach to the local character of $G$-closure : the convex case},
url = {http://eudml.org/doc/78846},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Babadjian, Jean-François
AU - Barchiesi, Marco
TI - A variational approach to the local character of $G$-closure : the convex case
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 351
EP - 373
LA - eng
KW - -convergence; quasiconvexity; polyconvexity; Young measure; two-scale convergence; cell integrands; counter-examples
UR - http://eudml.org/doc/78846
ER -
References
top- [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [2] Allaire G., Shape Optimization by the Homogenization Method, Lecture Series in Mathematics and its Applications, vol. 146, Springer, Berlin, 2002. Zbl0990.35001MR1859696
- [3] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
- [4] Aumann R.J., Hart S., Bi-convexity and bi-martingales, Israel J. Math.54 (1986) 159-180. Zbl0607.52001MR852476
- [5] Ball J.M., A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transition, Nice, 1988, Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207-215. Zbl0991.49500MR1036070
- [6] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
- [7] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc. London Ser. A338 (1992) 389-450. Zbl0758.73009
- [8] Barchiesi M., Multiscale homogenization of convex functionals with discontinuous integrand, J. Convex Anal.14 (2007) 205-226. Zbl1143.28001MR2310438
- [9] Barchiesi M., Loss of polyconvexity by homogenization: a new example, Calc. Var. Partial Differential Equations30 (2007) 215-230. Zbl1128.35015MR2334938
- [10] Bhattacharya K., Firoozye N., James R.D., Kohn R., Restrictions on microstructure, Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 843-878. Zbl0808.73063MR1303758
- [11] Braides A., Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL. Mem. Mat.9 (5) (1985) 313-321. Zbl0582.49014MR899255
- [12] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0911.49010MR1684713
- [13] Braides A., A handbook of Γ-convergence, in: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 3, Elsevier, Amsterdam, 2006, pp. 101-213.
- [14] Briane M., Casado-Díaz J., Lack of compactness in two-scale convergence, SIAM J. Math. Anal.37 (2005) 343-346. Zbl1112.35016MR2176106
- [15] Casadio Tarabusi E., An algebraic characterization of quasi-convex functions, Ricerche Mat.42 (1993) 11-24. Zbl0883.26011MR1283802
- [16] Chiadò Piat V., Dal Maso G., Defranceschi A., G-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (1990) 123-160. Zbl0731.35033MR1065871
- [17] Chlebík M., Kirchheim B., Rigidity for the four gradient problem, J. Reine Angew. Math.551 (2002) 1-9. Zbl1019.49022MR1932170
- [18] Dacorogna B., Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer, Berlin, 1989. Zbl0703.49001MR990890
- [19] Dal Maso G., An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0816.49001MR1201152
- [20] Ekeland I., Temam R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999, English edition. Zbl0939.49002MR1727362
- [21] Fonseca I., Francfort G.A., Relaxation in BVversus quasiconvexification in ; a model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations3 (1995) 407-446. Zbl0847.73077MR1385294
- [22] Fonseca I., Müller S., Pedregal P., Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal.29 (1998) 736-756. Zbl0920.49009MR1617712
- [23] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105, Princeton Univ. Press, Princeton, 1983. Zbl0516.49003MR717034
- [24] Gloria A., An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale Model. Simul.3 (2006) 996-1043. Zbl1119.74038MR2272308
- [25] B. Kirchheim, Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003 (Lecture notes 16/2003 Max Planck Institute).
- [26] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, in: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, pp. 347-395. Zbl1290.35097MR2008346
- [27] Lukkassen D., Nguetseng G., Wall P., Two scale convergence, Int. J. Pure Appl. Math.2 (2002) 35-86. Zbl1061.35015MR1912819
- [28] Lurie K.A., Cherkaev A.V., Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Roy. Soc. Edinburgh Sect. A104 (1986) 21-38. Zbl0623.73011MR877890
- [29] Milton G.W., The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, vol. 6, Cambridge University Press, Cambridge, 2002. Zbl0993.74002MR1899805
- [30] Milton G.W., Nesi V., Polycrystalline configurations that maximize electrical resistivity, J. Mech. Phys. Solids39 (1991) 525-542. Zbl0734.73068MR1106125
- [31] Müller S., Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal.99 (1987) 189-212. Zbl0629.73009MR888450
- [32] Müller S., Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996, Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210. Zbl0968.74050MR1731640
- [33] Murat F., Tartar L., H-convergence, in: Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser Boston Inc., Boston, 1997, pp. 21-43. Zbl0920.35019MR1493039
- [34] Pedregal P., Parametrized Measures and Variational Principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30, Birkhäuser Boston Inc., Boston, 1997. Zbl0879.49017MR1452107
- [35] Raitums U., On the local representation of G-closure, Arch. Rational Mech. Anal.158 (2001) 213-234. Zbl1123.35320MR1842345
- [36] V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities, Dissertation, Princeton University, 1974.
- [37] Székelyhidi L., Rank-One Convex Hulls in , Calc. Var. Partial Differential Equations22 (2005) 253-281. Zbl1104.49013MR2118899
- [38] Tartar L., Estimations fines des coefficients homogénéisés, in: Kree P. (Ed.), Ennio De Giorgi Colloquium, Res. Notes in Math., vol. 125, Pitman, Boston, 1985, pp. 168-187. Zbl0586.35004MR909716
- [39] Tartar L., Some remarks on separately convex functions, in: Microstructure and Phase Transition, The IMA Vol. Math. Appl., vol. 54, Springer-Verlag, New York, 1993, pp. 191-204. Zbl0823.26008MR1320538
- [40] Tartar L., An introduction to the homogenization method in optimal design, in: Optimal Shape Design, Tróia, 1998, Lecture Notes in Math., vol. 1740, Springer, Berlin, 2000, pp. 47-156. Zbl1040.49022MR1804685
- [41] Visintin A., Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equation29 (2007) 239-265. Zbl1129.35011MR2307775
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.