A variational approach to the local character of G -closure : the convex case

Jean-François Babadjian; Marco Barchiesi

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 351-373
  • ISSN: 0294-1449

How to cite

top

Babadjian, Jean-François, and Barchiesi, Marco. "A variational approach to the local character of $G$-closure : the convex case." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 351-373. <http://eudml.org/doc/78846>.

@article{Babadjian2009,
author = {Babadjian, Jean-François, Barchiesi, Marco},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-convergence; quasiconvexity; polyconvexity; Young measure; two-scale convergence; cell integrands; counter-examples},
language = {eng},
number = {2},
pages = {351-373},
publisher = {Elsevier},
title = {A variational approach to the local character of $G$-closure : the convex case},
url = {http://eudml.org/doc/78846},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Babadjian, Jean-François
AU - Barchiesi, Marco
TI - A variational approach to the local character of $G$-closure : the convex case
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 351
EP - 373
LA - eng
KW - -convergence; quasiconvexity; polyconvexity; Young measure; two-scale convergence; cell integrands; counter-examples
UR - http://eudml.org/doc/78846
ER -

References

top
  1. [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] Allaire G., Shape Optimization by the Homogenization Method, Lecture Series in Mathematics and its Applications, vol. 146, Springer, Berlin, 2002. Zbl0990.35001MR1859696
  3. [3] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
  4. [4] Aumann R.J., Hart S., Bi-convexity and bi-martingales, Israel J. Math.54 (1986) 159-180. Zbl0607.52001MR852476
  5. [5] Ball J.M., A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transition, Nice, 1988, Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207-215. Zbl0991.49500MR1036070
  6. [6] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
  7. [7] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc. London Ser. A338 (1992) 389-450. Zbl0758.73009
  8. [8] Barchiesi M., Multiscale homogenization of convex functionals with discontinuous integrand, J. Convex Anal.14 (2007) 205-226. Zbl1143.28001MR2310438
  9. [9] Barchiesi M., Loss of polyconvexity by homogenization: a new example, Calc. Var. Partial Differential Equations30 (2007) 215-230. Zbl1128.35015MR2334938
  10. [10] Bhattacharya K., Firoozye N., James R.D., Kohn R., Restrictions on microstructure, Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 843-878. Zbl0808.73063MR1303758
  11. [11] Braides A., Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL. Mem. Mat.9 (5) (1985) 313-321. Zbl0582.49014MR899255
  12. [12] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0911.49010MR1684713
  13. [13] Braides A., A handbook of Γ-convergence, in: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 3, Elsevier, Amsterdam, 2006, pp. 101-213. 
  14. [14] Briane M., Casado-Díaz J., Lack of compactness in two-scale convergence, SIAM J. Math. Anal.37 (2005) 343-346. Zbl1112.35016MR2176106
  15. [15] Casadio Tarabusi E., An algebraic characterization of quasi-convex functions, Ricerche Mat.42 (1993) 11-24. Zbl0883.26011MR1283802
  16. [16] Chiadò Piat V., Dal Maso G., Defranceschi A., G-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (1990) 123-160. Zbl0731.35033MR1065871
  17. [17] Chlebík M., Kirchheim B., Rigidity for the four gradient problem, J. Reine Angew. Math.551 (2002) 1-9. Zbl1019.49022MR1932170
  18. [18] Dacorogna B., Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer, Berlin, 1989. Zbl0703.49001MR990890
  19. [19] Dal Maso G., An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0816.49001MR1201152
  20. [20] Ekeland I., Temam R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999, English edition. Zbl0939.49002MR1727362
  21. [21] Fonseca I., Francfort G.A., Relaxation in BVversus quasiconvexification in W 1 , p ; a model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations3 (1995) 407-446. Zbl0847.73077MR1385294
  22. [22] Fonseca I., Müller S., Pedregal P., Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal.29 (1998) 736-756. Zbl0920.49009MR1617712
  23. [23] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105, Princeton Univ. Press, Princeton, 1983. Zbl0516.49003MR717034
  24. [24] Gloria A., An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale Model. Simul.3 (2006) 996-1043. Zbl1119.74038MR2272308
  25. [25] B. Kirchheim, Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003 (Lecture notes 16/2003 Max Planck Institute). 
  26. [26] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, in: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, pp. 347-395. Zbl1290.35097MR2008346
  27. [27] Lukkassen D., Nguetseng G., Wall P., Two scale convergence, Int. J. Pure Appl. Math.2 (2002) 35-86. Zbl1061.35015MR1912819
  28. [28] Lurie K.A., Cherkaev A.V., Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Roy. Soc. Edinburgh Sect. A104 (1986) 21-38. Zbl0623.73011MR877890
  29. [29] Milton G.W., The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, vol. 6, Cambridge University Press, Cambridge, 2002. Zbl0993.74002MR1899805
  30. [30] Milton G.W., Nesi V., Polycrystalline configurations that maximize electrical resistivity, J. Mech. Phys. Solids39 (1991) 525-542. Zbl0734.73068MR1106125
  31. [31] Müller S., Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal.99 (1987) 189-212. Zbl0629.73009MR888450
  32. [32] Müller S., Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996, Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210. Zbl0968.74050MR1731640
  33. [33] Murat F., Tartar L., H-convergence, in: Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser Boston Inc., Boston, 1997, pp. 21-43. Zbl0920.35019MR1493039
  34. [34] Pedregal P., Parametrized Measures and Variational Principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30, Birkhäuser Boston Inc., Boston, 1997. Zbl0879.49017MR1452107
  35. [35] Raitums U., On the local representation of G-closure, Arch. Rational Mech. Anal.158 (2001) 213-234. Zbl1123.35320MR1842345
  36. [36] V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities, Dissertation, Princeton University, 1974. 
  37. [37] Székelyhidi L., Rank-One Convex Hulls in M 2 × 2 , Calc. Var. Partial Differential Equations22 (2005) 253-281. Zbl1104.49013MR2118899
  38. [38] Tartar L., Estimations fines des coefficients homogénéisés, in: Kree P. (Ed.), Ennio De Giorgi Colloquium, Res. Notes in Math., vol. 125, Pitman, Boston, 1985, pp. 168-187. Zbl0586.35004MR909716
  39. [39] Tartar L., Some remarks on separately convex functions, in: Microstructure and Phase Transition, The IMA Vol. Math. Appl., vol. 54, Springer-Verlag, New York, 1993, pp. 191-204. Zbl0823.26008MR1320538
  40. [40] Tartar L., An introduction to the homogenization method in optimal design, in: Optimal Shape Design, Tróia, 1998, Lecture Notes in Math., vol. 1740, Springer, Berlin, 2000, pp. 47-156. Zbl1040.49022MR1804685
  41. [41] Visintin A., Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equation29 (2007) 239-265. Zbl1129.35011MR2307775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.