Nonlinear Schrödinger equation on real hyperbolic spaces

Jean-Philippe Anker; Vittoria Pierfelice

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1853-1869
  • ISSN: 0294-1449

How to cite

top

Anker, Jean-Philippe, and Pierfelice, Vittoria. "Nonlinear Schrödinger equation on real hyperbolic spaces." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1853-1869. <http://eudml.org/doc/78916>.

@article{Anker2009,
author = {Anker, Jean-Philippe, Pierfelice, Vittoria},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equation; hyperbolic space; dispersive inequality; Strichartz estimate; well-posedness; scattering},
language = {eng},
number = {5},
pages = {1853-1869},
publisher = {Elsevier},
title = {Nonlinear Schrödinger equation on real hyperbolic spaces},
url = {http://eudml.org/doc/78916},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Anker, Jean-Philippe
AU - Pierfelice, Vittoria
TI - Nonlinear Schrödinger equation on real hyperbolic spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1853
EP - 1869
LA - eng
KW - nonlinear Schrödinger equation; hyperbolic space; dispersive inequality; Strichartz estimate; well-posedness; scattering
UR - http://eudml.org/doc/78916
ER -

References

top
  1. [1] Anker J.-Ph., L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math.132 (1990) 597-628. Zbl0741.43009MR1078270
  2. [2] Anker J.-Ph., Damek E., Yacoub C., Spherical analysis on harmonic AN groups, Ann. Sc. Norm. Super. Pisa33 (1996) 643-679. Zbl0881.22008MR1469569
  3. [3] Banica V., The nonlinear Schrödinger equation on the hyperbolic space, Comm. Partial Differential Equations32 (10) (2007) 1643-1677, arXiv:math/0406058. Zbl1143.35091MR2372482
  4. [4] Banica V., Carles R., Staffilani G., Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space, Geom. Funct. Anal.18 (2) (2008) 367-399. Zbl1186.35198MR2421543
  5. [5] Bourgain J., Fourier transformation restriction phenomena for certain lattice subsets and application to the nonlinear evolution equations I – Schrödinger equations, Geom. Funct. Anal.3 (2) (1993) 107-156. Zbl0787.35097MR1209299
  6. [6] Burq N., Gérard P., Tzvetkov N., Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (3) (2004) 569-605. Zbl1067.58027MR2058384
  7. [7] Cowling M.G., Herz's “principe de majoratio” and the Kunze–Stein phenomenon, in: Harmonic Analysis and Number Theory, Montreal, 1996, CMS Conf. Proc., vol. 21, Amer. Math. Soc., 1997, pp. 73-88. Zbl0964.22008MR1472779
  8. [8] P. Gérard, V. Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds, Bull. Soc. Math. Fr., in press. Zbl1183.35251
  9. [9] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1) (1995) 50-68. Zbl0849.35064MR1351643
  10. [10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978, Amer. Math. Soc., 2001. Zbl0451.53038MR1834454
  11. [11] Helgason S., Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions), Academic Press, 1984, Amer. Math. Soc., 2002. Zbl0543.58001MR754767
  12. [12] Helgason S., Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., 1994. Zbl0809.53057MR1280714
  13. [13] Ionescu A.D., An endpoint estimate for the Kunze–Stein phenomenon and related maximal operators, Ann. of Math. (2)152 (1) (2000) 259-275. Zbl0970.43002MR1792296
  14. [14] A.D. Ionescu, G. Staffilani, Semilinear Schrödinger flows on hyperbolic spaces – scattering in H 1 , preprint, 2008. Zbl1203.35262
  15. [15] Kato T., On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré (A) Phys. Theor.46 (1) (1987) 113-129. Zbl0632.35038MR877998
  16. [16] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
  17. [17] Pierfelice V., Weighted Strichartz estimates for the radial perturbed Schrödinger equation on the hyperbolic space, Manuscripta Math.120 (4) (2006) 377-389. Zbl1128.35028MR2245889
  18. [18] Pierfelice V., Weighted Strichartz estimates for the Schrödinger and wave equations on Damek–Ricci spaces, Math. Z.260 (2) (2008) 377-392. Zbl1153.35074MR2429618
  19. [19] Tao T., Visan M., Zhang X., Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J.140 (1) (2007) 165-202. Zbl1187.35246MR2355070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.