Nonlinear Schrödinger equation on real hyperbolic spaces
Jean-Philippe Anker; Vittoria Pierfelice
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1853-1869
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAnker, Jean-Philippe, and Pierfelice, Vittoria. "Nonlinear Schrödinger equation on real hyperbolic spaces." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1853-1869. <http://eudml.org/doc/78916>.
@article{Anker2009,
author = {Anker, Jean-Philippe, Pierfelice, Vittoria},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equation; hyperbolic space; dispersive inequality; Strichartz estimate; well-posedness; scattering},
language = {eng},
number = {5},
pages = {1853-1869},
publisher = {Elsevier},
title = {Nonlinear Schrödinger equation on real hyperbolic spaces},
url = {http://eudml.org/doc/78916},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Anker, Jean-Philippe
AU - Pierfelice, Vittoria
TI - Nonlinear Schrödinger equation on real hyperbolic spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1853
EP - 1869
LA - eng
KW - nonlinear Schrödinger equation; hyperbolic space; dispersive inequality; Strichartz estimate; well-posedness; scattering
UR - http://eudml.org/doc/78916
ER -
References
top- [1] Anker J.-Ph., Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math.132 (1990) 597-628. Zbl0741.43009MR1078270
- [2] Anker J.-Ph., Damek E., Yacoub C., Spherical analysis on harmonic AN groups, Ann. Sc. Norm. Super. Pisa33 (1996) 643-679. Zbl0881.22008MR1469569
- [3] Banica V., The nonlinear Schrödinger equation on the hyperbolic space, Comm. Partial Differential Equations32 (10) (2007) 1643-1677, arXiv:math/0406058. Zbl1143.35091MR2372482
- [4] Banica V., Carles R., Staffilani G., Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space, Geom. Funct. Anal.18 (2) (2008) 367-399. Zbl1186.35198MR2421543
- [5] Bourgain J., Fourier transformation restriction phenomena for certain lattice subsets and application to the nonlinear evolution equations I – Schrödinger equations, Geom. Funct. Anal.3 (2) (1993) 107-156. Zbl0787.35097MR1209299
- [6] Burq N., Gérard P., Tzvetkov N., Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (3) (2004) 569-605. Zbl1067.58027MR2058384
- [7] Cowling M.G., Herz's “principe de majoratio” and the Kunze–Stein phenomenon, in: Harmonic Analysis and Number Theory, Montreal, 1996, CMS Conf. Proc., vol. 21, Amer. Math. Soc., 1997, pp. 73-88. Zbl0964.22008MR1472779
- [8] P. Gérard, V. Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds, Bull. Soc. Math. Fr., in press. Zbl1183.35251
- [9] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1) (1995) 50-68. Zbl0849.35064MR1351643
- [10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978, Amer. Math. Soc., 2001. Zbl0451.53038MR1834454
- [11] Helgason S., Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions), Academic Press, 1984, Amer. Math. Soc., 2002. Zbl0543.58001MR754767
- [12] Helgason S., Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., 1994. Zbl0809.53057MR1280714
- [13] Ionescu A.D., An endpoint estimate for the Kunze–Stein phenomenon and related maximal operators, Ann. of Math. (2)152 (1) (2000) 259-275. Zbl0970.43002MR1792296
- [14] A.D. Ionescu, G. Staffilani, Semilinear Schrödinger flows on hyperbolic spaces – scattering in , preprint, 2008. Zbl1203.35262
- [15] Kato T., On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré (A) Phys. Theor.46 (1) (1987) 113-129. Zbl0632.35038MR877998
- [16] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
- [17] Pierfelice V., Weighted Strichartz estimates for the radial perturbed Schrödinger equation on the hyperbolic space, Manuscripta Math.120 (4) (2006) 377-389. Zbl1128.35028MR2245889
- [18] Pierfelice V., Weighted Strichartz estimates for the Schrödinger and wave equations on Damek–Ricci spaces, Math. Z.260 (2) (2008) 377-392. Zbl1153.35074MR2429618
- [19] Tao T., Visan M., Zhang X., Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J.140 (1) (2007) 165-202. Zbl1187.35246MR2355070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.