On the similarity between the Iwasawa projection and the diagonal part

J. J. Duistermaat

Mémoires de la Société Mathématique de France (1984)

  • Volume: 15, page 129-138
  • ISSN: 0249-633X

How to cite

top

Duistermaat, J. J.. "On the similarity between the Iwasawa projection and the diagonal part." Mémoires de la Société Mathématique de France 15 (1984): 129-138. <http://eudml.org/doc/94836>.

@article{Duistermaat1984,
author = {Duistermaat, J. J.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {real connected semi-simple Lie group; Iwasawa decomposition; Killing form; symmetric space; Iwasawa projection},
language = {eng},
pages = {129-138},
publisher = {Société mathématique de France},
title = {On the similarity between the Iwasawa projection and the diagonal part},
url = {http://eudml.org/doc/94836},
volume = {15},
year = {1984},
}

TY - JOUR
AU - Duistermaat, J. J.
TI - On the similarity between the Iwasawa projection and the diagonal part
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 129
EP - 138
LA - eng
KW - real connected semi-simple Lie group; Iwasawa decomposition; Killing form; symmetric space; Iwasawa projection
UR - http://eudml.org/doc/94836
ER -

References

top
  1. [1] J.-L. Clerc, On the asymptotic behaviour of generalized Bessel functions, Rend. Circ. Mat. Palermo (2) 1981, Supp. No. 1, pp. 145-147. Zbl0512.33011MR83c:58078
  2. [2] J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semi-simple Lie groups, Comp. Math. 49 (1983), 309-398. Zbl0524.43008MR85e:58150
  3. [3] G.J. Heckman, Projections of Orbits and Asymptotic Behaviour of Multiplicities for Compact Lie Groups, Thesis, Rijksuniversiteit Leiden, 1980. 
  4. [4] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Éc. Norm. Sup. 6 (1973), 413-455. Zbl0293.22019MR51 #806
  5. [5] J.N. Mather, Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254-291. Zbl0177.26002MR41 #4582
  6. [6] J. Moser, On the volume elements on a manifold, Trans. A.M.S. 120 (1965), 286-294. Zbl0141.19407MR32 #409
  7. [7] R.J. Stanton and P.A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251-276. Zbl0411.43014MR58 #23365
  8. [8] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Arkiv för Matematik, 13 (1975), 145-159. Zbl0303.42022MR51 #11028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.