On the similarity between the Iwasawa projection and the diagonal part

J. J. Duistermaat

Mémoires de la Société Mathématique de France (1984)

  • Volume: 15, page 129-138
  • ISSN: 0249-633X

How to cite

top

Duistermaat, J. J.. "On the similarity between the Iwasawa projection and the diagonal part." Mémoires de la Société Mathématique de France 15 (1984): 129-138. <http://eudml.org/doc/94836>.

@article{Duistermaat1984,
author = {Duistermaat, J. J.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {real connected semi-simple Lie group; Iwasawa decomposition; Killing form; symmetric space; Iwasawa projection},
language = {eng},
pages = {129-138},
publisher = {Société mathématique de France},
title = {On the similarity between the Iwasawa projection and the diagonal part},
url = {http://eudml.org/doc/94836},
volume = {15},
year = {1984},
}

TY - JOUR
AU - Duistermaat, J. J.
TI - On the similarity between the Iwasawa projection and the diagonal part
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 129
EP - 138
LA - eng
KW - real connected semi-simple Lie group; Iwasawa decomposition; Killing form; symmetric space; Iwasawa projection
UR - http://eudml.org/doc/94836
ER -

References

top
  1. [1] J.-L. Clerc, On the asymptotic behaviour of generalized Bessel functions, Rend. Circ. Mat. Palermo (2) 1981, Supp. No. 1, pp. 145-147. Zbl0512.33011MR83c:58078
  2. [2] J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semi-simple Lie groups, Comp. Math. 49 (1983), 309-398. Zbl0524.43008MR85e:58150
  3. [3] G.J. Heckman, Projections of Orbits and Asymptotic Behaviour of Multiplicities for Compact Lie Groups, Thesis, Rijksuniversiteit Leiden, 1980. 
  4. [4] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Éc. Norm. Sup. 6 (1973), 413-455. Zbl0293.22019MR51 #806
  5. [5] J.N. Mather, Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254-291. Zbl0177.26002MR41 #4582
  6. [6] J. Moser, On the volume elements on a manifold, Trans. A.M.S. 120 (1965), 286-294. Zbl0141.19407MR32 #409
  7. [7] R.J. Stanton and P.A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251-276. Zbl0411.43014MR58 #23365
  8. [8] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Arkiv för Matematik, 13 (1975), 145-159. Zbl0303.42022MR51 #11028

NotesEmbed ?

top

You must be logged in to post comments.