Marches récurrentes au sens de Harris sur les groupes localement compacts. I

A. Brunel; D. Revuz

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 2, page 273-310
  • ISSN: 0012-9593

How to cite

top

Brunel, A., and Revuz, D.. "Marches récurrentes au sens de Harris sur les groupes localement compacts. I." Annales scientifiques de l'École Normale Supérieure 7.2 (1974): 273-310. <http://eudml.org/doc/81939>.

@article{Brunel1974,
author = {Brunel, A., Revuz, D.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {2},
pages = {273-310},
publisher = {Elsevier},
title = {Marches récurrentes au sens de Harris sur les groupes localement compacts. I},
url = {http://eudml.org/doc/81939},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Brunel, A.
AU - Revuz, D.
TI - Marches récurrentes au sens de Harris sur les groupes localement compacts. I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 2
SP - 273
EP - 310
LA - fre
UR - http://eudml.org/doc/81939
ER -

References

top
  1. [1] A. BRUNEL, Y. GUIVARCH et M. KEANE, Séminaire K. G. B. (Astérisque, fasc. 4, 1973). MR48 #1325
  2. [2] A. BRUNEL et D. REVUZ, Quelques applications probabilistes de la quasi-compacité (à paraître). Zbl0318.60064
  3. [3] M. DUFLO, Opérateurs potentiels des chaînes et des processus de Markov irréductibles (Bull. Soc. Math. Fr., t. 98, 1970, p. 127-163). Zbl0205.44803MR41 #9349
  4. [4] N. C. JAIN, Some limit theorems for a general Markov process (Z. Wahrscheinlichkeitstheorie, vol. 6, 1966, p. 206-223). Zbl0234.60086MR35 #7411
  5. [5] H. KESTEN, The Martin boundary of recurrent random walks on countable groups (Fifth Berkeley symposium in Probability and Math. Stat. vol. II, part 2, 1966, p. 51-75). Zbl0234.60091MR35 #4988
  6. [6] H. KESTEN et F. SPITZER, Random walks on countably infinite Abelian groups (Acta Math., vol. 114, 1965, p. 237-265). Zbl0146.38301MR33 #3366
  7. [7] J. NEVEU, Potentiel markovien récurrent des chaînes de Harris (Ann. Inst. Fourier, vol. 22, n° 2, 1972, p. 85-130). Zbl0226.60084MR52 #1889
  8. [8] D. ORNSTEIN, Random walks I. (Trans. Amer. Math. Soc., vol. 138, 1969, p. 1-43). Zbl0181.44501MR38 #6675
  9. [9] S. C. PORT et C. J. STONE, Potential theory of random walks on abelian groups (Acta Mat., vol. 122, 1969, p. 13). Zbl0183.47201MR41 #6319
  10. [10] D. REVUZ, Markov chains (livre à paraître), North Holland Publishing Company. Zbl0332.60045
  11. [11] W. RUDIN, Fourier analysis on groups, Interscience, 1967. Zbl0107.09603
  12. [12] F. SPITZER, Principle of random walks, Van Nostrand, 1964. Zbl0119.34304MR30 #1521

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.