On a generalization of Hilbert's 21st problem

Richard M. Hain

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 4, page 609-627
  • ISSN: 0012-9593

How to cite

top

Hain, Richard M.. "On a generalization of Hilbert's 21st problem." Annales scientifiques de l'École Normale Supérieure 19.4 (1986): 609-627. <http://eudml.org/doc/82189>.

@article{Hain1986,
author = {Hain, Richard M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {monodromy representation; mixed Hodge structure},
language = {eng},
number = {4},
pages = {609-627},
publisher = {Elsevier},
title = {On a generalization of Hilbert's 21st problem},
url = {http://eudml.org/doc/82189},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Hain, Richard M.
TI - On a generalization of Hilbert's 21st problem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 4
SP - 609
EP - 627
LA - eng
KW - monodromy representation; mixed Hodge structure
UR - http://eudml.org/doc/82189
ER -

References

top
  1. [1] K. AOMOTO, Fonctions hyperlogarithmiques et groupes de monodromie unipotents (J. Fac. Sci. Tokyo, Vol. 25, 1978, pp. 149-156). Zbl0416.32020MR80g:14016
  2. [2] G. D. BIRKHOFF, The generalized Riemann Problem, Collected Mathematical Papers, American Mathematical Society, New York, 1950. 
  3. [3] L. BOUTET DE MONVEL, A. DOUADY and J.-L. VERDIER, Mathématique et Physique, Birkhöuser, Boston, 1983. Zbl0516.00021MR84m:32001
  4. [4] K.-T. CHEN, Extension of C∞ function algebra by integrals and Malcev completion of π1 (Advances in Math., Vol. 23, 1977, pp. 181-210). Zbl0345.58003MR56 #16664
  5. [5] K.-T. CHEN, Iterated path integrals (Bull. Amer. Math. Soc., Vol. 83, 1977, pp. 831-879). Zbl0389.58001MR56 #13210
  6. [6] D. CHUDNOVSKY and G. CHUDNOVSKY, editors, The Riemann Problem, Complete Integrability, and Arithmetic Applications (Lecture Notes in Mathematics 925, Springer-Verlag, Berlin, Heidelberg, New York, 1982). Zbl0477.00009MR83f:81003
  7. [7] P. DELIGNE, Équations Différentielles à Points Singuliers Réguliers (Lecture Notes in Mathematics 163, Springer-Verlag, Berlin, Heidelberg, New York, 1970. Zbl0244.14004MR54 #5232
  8. [8] P. DELIGNE, Théorie de Hodge II (Publ. Math. IHES, No. 40, 1971, pp. 5-58). Zbl0219.14007MR58 #16653a
  9. [9] V. GOLUBEVA, On the recovery of Pfaffian systems of Fuchsian type from the generators of the monodromy group (Math. USSR. Izvestija, Vol. 17, 1981, pp. 227-241). Zbl0494.58003
  10. [10] R. HAIN, The de Rham homotopy theory of complex algebraic varieties, (preprint). Zbl0637.55006
  11. [11] R. HAIN, The geometry of the mixed Hodge structure on the fundamental group, Algebric geometry 1985, Proc. Symp. Rire Math., to appear. 
  12. [12] D. HILBERT, Mathematical Problems, Lecture delivered before the International Congress of Mathematicians at Paris in 1900, reproduced in : Mathematical Developments Arising from Hilbert Problems (Proc. Symp. Pure Math., Vol. 28, American Math. Soc., 1976). 
  13. [13] J. HUMPHREYS, Linear Algebraic Groups, Springer-Verlag, New York, 1975. Zbl0325.20039MR53 #633
  14. [14] S.-Y. HWANG-MA, Periods of iterated integrals of holomorphic forms on a compact Riemann surface (Trans. Amer. Math. Soc., Vol. 264, 1981, pp. 295-300). Zbl0478.32016MR82k:14025
  15. [15] N. KATZ, An overview of Delign's work on Hilbert's twenty first problem (Proc. Symp. Pure Math., Vol. 28, Amer. Math. Soc., Providence, R. I., 1976, pp. 537-557). Zbl0347.14010MR55 #5627
  16. [16] I. A. LAPPO-DANILEVSKY, Mémoires sur la théorie des systèmes des équations différentielles linéaires, reprint, Chelsea, New York, 1953. Zbl0051.32301
  17. [17] J. MORGAN, The algebraic topology of smooth algebraic varieties (Publ. IHES, No. 48, 1978, pp. 137-204). Zbl0401.14003MR80e:55020
  18. [18] R. NARASIMHAN, Analysis on Real and Complex Manifolds, North Holland, Amsterdam, London, New York, 1973. MR49 #11576
  19. [19] D. PASSMAN, The Algebraic Theory of Group Rings, John Wiley, New York, 1977. Zbl0368.16003
  20. [20] J. PLEMELJ, Problems in the Sense of Riemann and Klein, John Wiley, New York, 1964. Zbl0124.28203MR30 #5008
  21. [21] D. QUILLEN, Rational homotopy theory (Ann. Math., Vol. 90, 1969, pp. 205-295). Zbl0191.53702MR41 #2678

NotesEmbed ?

top

You must be logged in to post comments.