C - -Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets

Hisayosi Matumoto

Compositio Mathematica (1992)

  • Volume: 82, Issue: 2, page 189-244
  • ISSN: 0010-437X

How to cite

top

Matumoto, Hisayosi. "$C^{-\infty }$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets." Compositio Mathematica 82.2 (1992): 189-244. <http://eudml.org/doc/90152>.

@article{Matumoto1992,
author = {Matumoto, Hisayosi},
journal = {Compositio Mathematica},
keywords = {real reductive linear Lie group; admissible unitary character; complexified Lie algebra; wave front set; Whittaker vectors; distribution character},
language = {eng},
number = {2},
pages = {189-244},
publisher = {Kluwer Academic Publishers},
title = {$C^\{-\infty \}$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets},
url = {http://eudml.org/doc/90152},
volume = {82},
year = {1992},
}

TY - JOUR
AU - Matumoto, Hisayosi
TI - $C^{-\infty }$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 2
SP - 189
EP - 244
LA - eng
KW - real reductive linear Lie group; admissible unitary character; complexified Lie algebra; wave front set; Whittaker vectors; distribution character
UR - http://eudml.org/doc/90152
ER -

References

top
  1. [1] D. Barbasch and D.A. Vogan Jr.: The local structure of characters, J. Funct. Anal.37 (1980), 27-55. Zbl0436.22011MR576644
  2. [2] D. Barbasch and D.A. Vogan Jr.: Primitive ideals and orbital integrals in complex classical groups, Math. Ann.259 (1982), 153-199. Zbl0489.22010MR656661
  3. [3] D. Barbasch and D.A. Vogan Jr.: Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra80 (1983), 350-382. Zbl0513.22009MR691809
  4. [4] D. Barbasch and D.A. Vogan Jr.: Unipotent representations of complex semisimple Lie groups, Ann. of Math.121 (1985), 41-110. Zbl0582.22007MR782556
  5. [5] D. Barbasch and D.A. Vogan Jr.: Weyl group representations and nilpotent orbits, in: P.C. Trombi (ed.), Representation Theory of Reductive Groups, Progress in Mathematics Vol. 40, 21-33, Birkhäuser, Boston-Basel- Stuttgart, 1983. Zbl0537.22013MR733804
  6. [6] J. Bernstein and S.I. Gelfand: Tensor product of finite and infinite dimensional representations of semisimple Lie algebras, Compositio Math.41 (1980), 245-285. Zbl0445.17006MR581584
  7. [7] D. Bump: Automorphic Forms on GL(3, R), Lecture Notes in Mathematics No. 1083, Springer-Verlag, Berlin-Heidelberg-New York, 1984. Zbl0543.22005MR765698
  8. [8] W. Casselman: A letter to Harish-Chandra, November30, 1982. 
  9. [9] W. Casselman: Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math.41 (1989), 385-438. Zbl0702.22016MR1013462
  10. [10] L.G. Casian: Primitive ideals and representations, J. of Algebra101 (1986), 497-515. Zbl0598.17006MR847174
  11. [11] R. Goodman: Horospherical functions on symmetric spaces, Canadian Mathematical Society Conference Proceedings1 (1981), 125-133. Zbl0545.43008
  12. [12] R. Goodman and N.R. Wallach: Whittaker vectors and conical vectors, J. Funct. Anal.39 (1980), 199-279. Zbl0475.22010MR597811
  13. [13] M. Hashizume: Whittaker models for semisimple Lie groups, Japan J. Math.5 (1979), 349-401. Zbl0506.22016MR614828
  14. [14] M. Hashizume: Whittaker functions on semisimple Lie groups, Hiroshima Math. J.13 (1982), 259-293. Zbl0524.43005MR665496
  15. [15] H. Hecht and W. Schmid: A proof of Blattner's conjecture, Invent. Math.31 (1975), 129-154. Zbl0319.22012MR396855
  16. [16] L. Hörmander: Fourier integral operators I, Acta Math.127 (1971), 79-183. Zbl0212.46601MR388463
  17. [17] R. Howe: Wave front sets of representations of Lie groups, in: Automorphic Forms, Representation Theory, and Arithmetic, Bombay, 1981. Zbl0494.22010MR633659
  18. [18] H. Jacquet: Fonction de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France95 (1967), 243-309. Zbl0155.05901MR271275
  19. [19] H. Jacquet and R.P. Langlands: Automorphic Form on GL(2), Lecture Notes in Mathematics, No. 114, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0236.12010MR401654
  20. [20] A. Joseph: Goldie rank in the enveloping algebra of a semisimple Lie algebra I, J. Algebra65 (1980), 269-283. Zbl0441.17004MR585721
  21. [21] A. Joseph: Goldie rank in the enveloping algebra of a semisimple Lie algebra II, J. Algebra65 (1980), 284-306. Zbl0441.17004MR585721
  22. [22] A. Joseph: On the associated variety of a primitive ideal, J. Algebra93 (1985), 509-523. Zbl0594.17009MR786766
  23. [23] M. Kashiwara: The invariant holonomic system on a semisimple Lie group, in: Algebraic Analysis (papers dedicated to Professor Mikio Sato on the occasion of his sixtieth birthday) Vol. 1, pp. 277-286, Academic Press, San Diego, 1988. Zbl0704.22008MR992461
  24. [24] M. Kashiwara and T. Kawai: Second-microlocalization and asymptotic expansions, in: Lecture Notes in Physics No. 126, pp. 21-76, Springer-Verlag, Berlin-Heidelberg -New York, 1980. Zbl0458.46027MR579740
  25. [25] M. Kashiwara and M. Vergne: Functions on the Shilov boundary of the generalized half plane, in: Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics No. 728, Springer-Verlag, Berlin-Heidelberg- New York, 1979. Zbl0416.22006MR548329
  26. [26] M. Kashiwara and M. Vergne: K-types and the singular spectrum, in: Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0411.22015MR548330
  27. [27] N. Kawanaka: Shintani lifting and generalized Gelfand-Graev representations, Proc. Symp. Pure Math.47 (1987), 147-163. Zbl0654.20046MR933357
  28. [28] D.R. King: The primitive ideals associated to Harish-Chandra modules and certain harmonic polynomials, Thesis, M.I.T., 1979. 
  29. [29] D.R. King: The character polynomial of the annihilator of an irreducible Harish-Chandra module, Amer. J. Math.103 (1981), 1195-1240. Zbl0486.17003MR636959
  30. [30] A.W. Knapp: Commutativity of intertwining operators for semisimple groups, Compo. Math.46 (1982), 33-84. Zbl0488.22027MR660154
  31. [31] A.W. Knapp: Representation Theory of Semisimple Groups, An Overview Based on Examples, Princeton Mathematical series 36, Princeton University Press, Lawrenceville, New Jersey, 1986. Zbl0604.22001MR855239
  32. [32] A.W. Knapp and G.J. Zuckerman: Classification theorems for representations of semisimple groups, in: Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics, Vol. 587 (1977), 138-159. Zbl0353.22011MR476923
  33. [33] A.W. Knapp and G.J. Zuckerman: Classification of irreducible tempered representations of semisimple groups, Ann. of Math.116 (1982), 389-501. Zbl0516.22011MR672840
  34. [34] B. Kostant: The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. of Math.81 (1959), 973-1032. Zbl0099.25603MR114875
  35. [35] B. Kostant: Lie group representations on polynomial rings, Amer. J. of Math.86 (1963), 327-402. Zbl0124.26802MR158024
  36. [36] B. Kostant: On Whittaker vectors and representation theory, Invent. Math.48 (1978), 101-184. Zbl0405.22013MR507800
  37. [37] B. Kostant and S. Rallis: Orbits and representations associated with symmetric spaces, Amer. J. of Math.93 (1971), 753-809. Zbl0224.22013MR311837
  38. [38] J. Lepowski and N.R. Wallach: Finite- and infinite-dimensional representations of linear semisimple groups, Trans. Amer. Math. Soc.184 (1973), 223-246. Zbl0279.17001MR327978
  39. [39] G. Lusztig and J.N. Spaltenstein: Induced unipotent classes, J. London Math. Soc.19 (1979), 41-52. Zbl0407.20035MR527733
  40. [40] T.E. Lynch: Generalized Whittaker vectors and representation theory, Thesis, M.I.T., 1979. 
  41. [41] I.G. MacDonald:Some irreducible representations of Weyl groups, Bull. London Math. Soc.4 (1972), 148-150. Zbl0251.20043MR320171
  42. [42] Hideya Matsumoto: Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan16 (1964), 419-446. Zbl0133.28706MR183816
  43. [43] Hisayosi Matumoto: Boundary value problems for Whittaker functions on real split semisimple Lie groups, Duke Math. J.53 (1986), 635-676. Zbl0621.22011MR860664
  44. [44] H. Matumoto: Whittaker vectors and associated varieties, Invent. Math.89 (1987), 219-224. Zbl0633.17006MR892192
  45. [45] H. Matumoto: Cohomological Hardy space for SU(2, 2): Adv. Stud. in Pure Math. Vol. 14, Kinokuniya Book Store and North-Holland, 1986. Zbl0725.22006
  46. [46] H. Matumoto: Whittaker vectors and the Goodman-Wallach operators: Acta Math. 161 (1988), 183-241. Zbl0723.22019MR971796
  47. [47] H. Matumoto: Whittaker modules associated with highest weight modules, Duke Math. J.60 (1989), 59-113. Erratum, ibid.61 (1990), 973. Zbl0716.17007MR1047117
  48. [48] H. Matumoto: C-∞-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations, Ann. Scient. Ec. Norm. Sup.23 (1990), 311-367. Erratum, ibid.23 (1990), 668. Zbl0760.22018
  49. [49] C Mœglin and J.L. Waldspurger: Modèles de Whittaker dénérés pour des groupes p-adiques, Math. Z.196 (1987), 427-452. Zbl0612.22008
  50. [50] K. Nishiyama: Virtual character modules of semisimple Lie groups and representations of Weyl groups, J. Math. Soc. Japan37, 719-740. Zbl0589.22012MR806310
  51. [51] R. Rao: Orbital integrals in reductive Lie groups, Ann. of Math.96 (1972), 505-510. Zbl0302.43002MR320232
  52. [52] F. Rodier: Modèle de Whittaker et caractères de representations, in: Non-Commutative Harmonic Analysis, Lecture Notes in Pure Mathematics No. 466, pp. 151-171, Springer-Verlag, Berlin-Heidelberg-New York, 1981. Zbl0339.22014MR393355
  53. [53] W. Rossman: Limit orbits in reductive Lie algebras, Duke Math. J.49 (1982), 215-229. Zbl0489.22019MR650378
  54. [54] W. Rossman: Tempered representations and orbits, Duke Math. J.49 (1982), 231-247. Zbl0488.22019MR650379
  55. [55] L.P. Rothschild: Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc.168 (1972), 403-421. Zbl0222.17009MR349778
  56. [56] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations, in: Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Mathematics No. 287, pp. 264-529, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0277.46039MR420735
  57. [57] G. Schiffmann: Intégrales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France99 (1971), 3-72. Zbl0223.22017MR311838
  58. [58] W. Schmid: On the characters of the discrete series (the Hermitian symmetric case), Invent. Math.30 (1975), 47-144. Zbl0324.22007MR396854
  59. [59] W. Schmid: Two character identities for semisimple Lie groups, in: Non-Commutative Harmonic Analysis, Springer Lecture Notes in Math. Vol. 587, 1977, pp. 196-225. Zbl0362.22015MR507247
  60. [60] W. Schmid: Boundary value problems for group invariant differential equations, in: Proceedings of the Cartan Symposium, Lyon, 1984, Asterisque. Zbl0621.22014MR837206
  61. [61] J. Sekiguchi: The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS. Kyoto Univ.20 (1984), 155-212. Zbl0556.14022MR736100
  62. [62] F. Shahidi: Whittaker models for real groups, Duke Math. J.47 (1980), 99-125. Zbl0433.22007MR563369
  63. [63] G. Shalika: The multiplicity one theorem for GL(n), Ann. of Math.100 (1974), 171-193. Zbl0316.12010MR348047
  64. [64] B. Speh and D.A. Vogan Jr.: Reducibility of generalized principal series representations, Acta. Math.145 (1980), 227-299. Zbl0457.22011MR590291
  65. [65] F. Treves: Introduction to Pseudodifferential and Fourier Integral Operators, Volume 1, Pseudodifferential Operators, Plenum Press, New York and London, 1980. Zbl0453.47027MR597144
  66. [66] D.A. Vogan Jr.: Gelfand-Kirillov dimensions for Harish-Chandra modules, Invent. Math.48 (1978), 75-98. Zbl0389.17002MR506503
  67. [67] D.A. Vogan Jr.: Representations of Real Reductive Lie Groups, Progress in Mathematics, Birkhäuser, 1982. Zbl0469.22012
  68. [68] D.A. Vogan Jr.: The orbit method and primitive ideals for semisimple Lie algebras, Canadian Mathematical Society Conference Proceedings Vol. 5Lie Algebras and Related Topics (1986), 281-316. Zbl0585.17008MR832204
  69. [69] D.A. Vogan Jr.: Irreducible characters of semisimple Lie groups IV, character-multiplicity duality, Duke Math. J.49 (1982), 943-1073. Zbl0536.22022MR683010
  70. [70] D.A. Vogan Jr.: Unitarizability of certain series of representations, Ann. of Math.120 (1984), 141-187. Zbl0561.22010MR750719
  71. [71] D.A. Vogan Jr.: Representations of reductive Lie groups, in: Proceedings of the International Congress of Mathematics, Berkeley, California, USA, 1986. Zbl0681.22013
  72. [72] N.R. Wallach: Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in: Lie group representations I, Lecture Notes in Pure Mathematics No. 1024, pp. 287-369, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0553.22005MR727854
  73. [73] N.R. Wallach: Real Reductive Groups I, Academic Press, 1987. Zbl0666.22002MR929683
  74. [74] N.R. Wallach: Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals, Adv. Stud. in Pure Math. Vol. 14, pp. 123-151, Kinokuniya Book Store, 1986. Zbl0714.17016MR1039836
  75. [75] G. Warner: Harmonic Analysis on Semi-Simple Lie Groups I, Die Drundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 188, Springer-Verlag, Berlin-Heidelberg -New York, 1972. Zbl0265.22020MR498999
  76. [76] H. Yamashita: Multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series, Adv. Stud. in Pure Math. Vol. 14, pp. 31-121, Kinokuniya Book Store, 1986. Zbl0759.22018MR1039835
  77. [77] G.J. Zuckerman: Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math.106 (1977), 295-308. Zbl0384.22004MR457636

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.