-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
Compositio Mathematica (1992)
- Volume: 82, Issue: 2, page 189-244
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMatumoto, Hisayosi. "$C^{-\infty }$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets." Compositio Mathematica 82.2 (1992): 189-244. <http://eudml.org/doc/90152>.
@article{Matumoto1992,
author = {Matumoto, Hisayosi},
journal = {Compositio Mathematica},
keywords = {real reductive linear Lie group; admissible unitary character; complexified Lie algebra; wave front set; Whittaker vectors; distribution character},
language = {eng},
number = {2},
pages = {189-244},
publisher = {Kluwer Academic Publishers},
title = {$C^\{-\infty \}$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets},
url = {http://eudml.org/doc/90152},
volume = {82},
year = {1992},
}
TY - JOUR
AU - Matumoto, Hisayosi
TI - $C^{-\infty }$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 2
SP - 189
EP - 244
LA - eng
KW - real reductive linear Lie group; admissible unitary character; complexified Lie algebra; wave front set; Whittaker vectors; distribution character
UR - http://eudml.org/doc/90152
ER -
References
top- [1] D. Barbasch and D.A. Vogan Jr.: The local structure of characters, J. Funct. Anal.37 (1980), 27-55. Zbl0436.22011MR576644
- [2] D. Barbasch and D.A. Vogan Jr.: Primitive ideals and orbital integrals in complex classical groups, Math. Ann.259 (1982), 153-199. Zbl0489.22010MR656661
- [3] D. Barbasch and D.A. Vogan Jr.: Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra80 (1983), 350-382. Zbl0513.22009MR691809
- [4] D. Barbasch and D.A. Vogan Jr.: Unipotent representations of complex semisimple Lie groups, Ann. of Math.121 (1985), 41-110. Zbl0582.22007MR782556
- [5] D. Barbasch and D.A. Vogan Jr.: Weyl group representations and nilpotent orbits, in: P.C. Trombi (ed.), Representation Theory of Reductive Groups, Progress in Mathematics Vol. 40, 21-33, Birkhäuser, Boston-Basel- Stuttgart, 1983. Zbl0537.22013MR733804
- [6] J. Bernstein and S.I. Gelfand: Tensor product of finite and infinite dimensional representations of semisimple Lie algebras, Compositio Math.41 (1980), 245-285. Zbl0445.17006MR581584
- [7] D. Bump: Automorphic Forms on GL(3, R), Lecture Notes in Mathematics No. 1083, Springer-Verlag, Berlin-Heidelberg-New York, 1984. Zbl0543.22005MR765698
- [8] W. Casselman: A letter to Harish-Chandra, November30, 1982.
- [9] W. Casselman: Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math.41 (1989), 385-438. Zbl0702.22016MR1013462
- [10] L.G. Casian: Primitive ideals and representations, J. of Algebra101 (1986), 497-515. Zbl0598.17006MR847174
- [11] R. Goodman: Horospherical functions on symmetric spaces, Canadian Mathematical Society Conference Proceedings1 (1981), 125-133. Zbl0545.43008
- [12] R. Goodman and N.R. Wallach: Whittaker vectors and conical vectors, J. Funct. Anal.39 (1980), 199-279. Zbl0475.22010MR597811
- [13] M. Hashizume: Whittaker models for semisimple Lie groups, Japan J. Math.5 (1979), 349-401. Zbl0506.22016MR614828
- [14] M. Hashizume: Whittaker functions on semisimple Lie groups, Hiroshima Math. J.13 (1982), 259-293. Zbl0524.43005MR665496
- [15] H. Hecht and W. Schmid: A proof of Blattner's conjecture, Invent. Math.31 (1975), 129-154. Zbl0319.22012MR396855
- [16] L. Hörmander: Fourier integral operators I, Acta Math.127 (1971), 79-183. Zbl0212.46601MR388463
- [17] R. Howe: Wave front sets of representations of Lie groups, in: Automorphic Forms, Representation Theory, and Arithmetic, Bombay, 1981. Zbl0494.22010MR633659
- [18] H. Jacquet: Fonction de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France95 (1967), 243-309. Zbl0155.05901MR271275
- [19] H. Jacquet and R.P. Langlands: Automorphic Form on GL(2), Lecture Notes in Mathematics, No. 114, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0236.12010MR401654
- [20] A. Joseph: Goldie rank in the enveloping algebra of a semisimple Lie algebra I, J. Algebra65 (1980), 269-283. Zbl0441.17004MR585721
- [21] A. Joseph: Goldie rank in the enveloping algebra of a semisimple Lie algebra II, J. Algebra65 (1980), 284-306. Zbl0441.17004MR585721
- [22] A. Joseph: On the associated variety of a primitive ideal, J. Algebra93 (1985), 509-523. Zbl0594.17009MR786766
- [23] M. Kashiwara: The invariant holonomic system on a semisimple Lie group, in: Algebraic Analysis (papers dedicated to Professor Mikio Sato on the occasion of his sixtieth birthday) Vol. 1, pp. 277-286, Academic Press, San Diego, 1988. Zbl0704.22008MR992461
- [24] M. Kashiwara and T. Kawai: Second-microlocalization and asymptotic expansions, in: Lecture Notes in Physics No. 126, pp. 21-76, Springer-Verlag, Berlin-Heidelberg -New York, 1980. Zbl0458.46027MR579740
- [25] M. Kashiwara and M. Vergne: Functions on the Shilov boundary of the generalized half plane, in: Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics No. 728, Springer-Verlag, Berlin-Heidelberg- New York, 1979. Zbl0416.22006MR548329
- [26] M. Kashiwara and M. Vergne: K-types and the singular spectrum, in: Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0411.22015MR548330
- [27] N. Kawanaka: Shintani lifting and generalized Gelfand-Graev representations, Proc. Symp. Pure Math.47 (1987), 147-163. Zbl0654.20046MR933357
- [28] D.R. King: The primitive ideals associated to Harish-Chandra modules and certain harmonic polynomials, Thesis, M.I.T., 1979.
- [29] D.R. King: The character polynomial of the annihilator of an irreducible Harish-Chandra module, Amer. J. Math.103 (1981), 1195-1240. Zbl0486.17003MR636959
- [30] A.W. Knapp: Commutativity of intertwining operators for semisimple groups, Compo. Math.46 (1982), 33-84. Zbl0488.22027MR660154
- [31] A.W. Knapp: Representation Theory of Semisimple Groups, An Overview Based on Examples, Princeton Mathematical series 36, Princeton University Press, Lawrenceville, New Jersey, 1986. Zbl0604.22001MR855239
- [32] A.W. Knapp and G.J. Zuckerman: Classification theorems for representations of semisimple groups, in: Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics, Vol. 587 (1977), 138-159. Zbl0353.22011MR476923
- [33] A.W. Knapp and G.J. Zuckerman: Classification of irreducible tempered representations of semisimple groups, Ann. of Math.116 (1982), 389-501. Zbl0516.22011MR672840
- [34] B. Kostant: The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. of Math.81 (1959), 973-1032. Zbl0099.25603MR114875
- [35] B. Kostant: Lie group representations on polynomial rings, Amer. J. of Math.86 (1963), 327-402. Zbl0124.26802MR158024
- [36] B. Kostant: On Whittaker vectors and representation theory, Invent. Math.48 (1978), 101-184. Zbl0405.22013MR507800
- [37] B. Kostant and S. Rallis: Orbits and representations associated with symmetric spaces, Amer. J. of Math.93 (1971), 753-809. Zbl0224.22013MR311837
- [38] J. Lepowski and N.R. Wallach: Finite- and infinite-dimensional representations of linear semisimple groups, Trans. Amer. Math. Soc.184 (1973), 223-246. Zbl0279.17001MR327978
- [39] G. Lusztig and J.N. Spaltenstein: Induced unipotent classes, J. London Math. Soc.19 (1979), 41-52. Zbl0407.20035MR527733
- [40] T.E. Lynch: Generalized Whittaker vectors and representation theory, Thesis, M.I.T., 1979.
- [41] I.G. MacDonald:Some irreducible representations of Weyl groups, Bull. London Math. Soc.4 (1972), 148-150. Zbl0251.20043MR320171
- [42] Hideya Matsumoto: Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan16 (1964), 419-446. Zbl0133.28706MR183816
- [43] Hisayosi Matumoto: Boundary value problems for Whittaker functions on real split semisimple Lie groups, Duke Math. J.53 (1986), 635-676. Zbl0621.22011MR860664
- [44] H. Matumoto: Whittaker vectors and associated varieties, Invent. Math.89 (1987), 219-224. Zbl0633.17006MR892192
- [45] H. Matumoto: Cohomological Hardy space for SU(2, 2): Adv. Stud. in Pure Math. Vol. 14, Kinokuniya Book Store and North-Holland, 1986. Zbl0725.22006
- [46] H. Matumoto: Whittaker vectors and the Goodman-Wallach operators: Acta Math. 161 (1988), 183-241. Zbl0723.22019MR971796
- [47] H. Matumoto: Whittaker modules associated with highest weight modules, Duke Math. J.60 (1989), 59-113. Erratum, ibid.61 (1990), 973. Zbl0716.17007MR1047117
- [48] H. Matumoto: C-∞-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations, Ann. Scient. Ec. Norm. Sup.23 (1990), 311-367. Erratum, ibid.23 (1990), 668. Zbl0760.22018
- [49] C Mœglin and J.L. Waldspurger: Modèles de Whittaker dénérés pour des groupes p-adiques, Math. Z.196 (1987), 427-452. Zbl0612.22008
- [50] K. Nishiyama: Virtual character modules of semisimple Lie groups and representations of Weyl groups, J. Math. Soc. Japan37, 719-740. Zbl0589.22012MR806310
- [51] R. Rao: Orbital integrals in reductive Lie groups, Ann. of Math.96 (1972), 505-510. Zbl0302.43002MR320232
- [52] F. Rodier: Modèle de Whittaker et caractères de representations, in: Non-Commutative Harmonic Analysis, Lecture Notes in Pure Mathematics No. 466, pp. 151-171, Springer-Verlag, Berlin-Heidelberg-New York, 1981. Zbl0339.22014MR393355
- [53] W. Rossman: Limit orbits in reductive Lie algebras, Duke Math. J.49 (1982), 215-229. Zbl0489.22019MR650378
- [54] W. Rossman: Tempered representations and orbits, Duke Math. J.49 (1982), 231-247. Zbl0488.22019MR650379
- [55] L.P. Rothschild: Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc.168 (1972), 403-421. Zbl0222.17009MR349778
- [56] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations, in: Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Mathematics No. 287, pp. 264-529, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0277.46039MR420735
- [57] G. Schiffmann: Intégrales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France99 (1971), 3-72. Zbl0223.22017MR311838
- [58] W. Schmid: On the characters of the discrete series (the Hermitian symmetric case), Invent. Math.30 (1975), 47-144. Zbl0324.22007MR396854
- [59] W. Schmid: Two character identities for semisimple Lie groups, in: Non-Commutative Harmonic Analysis, Springer Lecture Notes in Math. Vol. 587, 1977, pp. 196-225. Zbl0362.22015MR507247
- [60] W. Schmid: Boundary value problems for group invariant differential equations, in: Proceedings of the Cartan Symposium, Lyon, 1984, Asterisque. Zbl0621.22014MR837206
- [61] J. Sekiguchi: The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS. Kyoto Univ.20 (1984), 155-212. Zbl0556.14022MR736100
- [62] F. Shahidi: Whittaker models for real groups, Duke Math. J.47 (1980), 99-125. Zbl0433.22007MR563369
- [63] G. Shalika: The multiplicity one theorem for GL(n), Ann. of Math.100 (1974), 171-193. Zbl0316.12010MR348047
- [64] B. Speh and D.A. Vogan Jr.: Reducibility of generalized principal series representations, Acta. Math.145 (1980), 227-299. Zbl0457.22011MR590291
- [65] F. Treves: Introduction to Pseudodifferential and Fourier Integral Operators, Volume 1, Pseudodifferential Operators, Plenum Press, New York and London, 1980. Zbl0453.47027MR597144
- [66] D.A. Vogan Jr.: Gelfand-Kirillov dimensions for Harish-Chandra modules, Invent. Math.48 (1978), 75-98. Zbl0389.17002MR506503
- [67] D.A. Vogan Jr.: Representations of Real Reductive Lie Groups, Progress in Mathematics, Birkhäuser, 1982. Zbl0469.22012
- [68] D.A. Vogan Jr.: The orbit method and primitive ideals for semisimple Lie algebras, Canadian Mathematical Society Conference Proceedings Vol. 5Lie Algebras and Related Topics (1986), 281-316. Zbl0585.17008MR832204
- [69] D.A. Vogan Jr.: Irreducible characters of semisimple Lie groups IV, character-multiplicity duality, Duke Math. J.49 (1982), 943-1073. Zbl0536.22022MR683010
- [70] D.A. Vogan Jr.: Unitarizability of certain series of representations, Ann. of Math.120 (1984), 141-187. Zbl0561.22010MR750719
- [71] D.A. Vogan Jr.: Representations of reductive Lie groups, in: Proceedings of the International Congress of Mathematics, Berkeley, California, USA, 1986. Zbl0681.22013
- [72] N.R. Wallach: Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in: Lie group representations I, Lecture Notes in Pure Mathematics No. 1024, pp. 287-369, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0553.22005MR727854
- [73] N.R. Wallach: Real Reductive Groups I, Academic Press, 1987. Zbl0666.22002MR929683
- [74] N.R. Wallach: Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals, Adv. Stud. in Pure Math. Vol. 14, pp. 123-151, Kinokuniya Book Store, 1986. Zbl0714.17016MR1039836
- [75] G. Warner: Harmonic Analysis on Semi-Simple Lie Groups I, Die Drundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 188, Springer-Verlag, Berlin-Heidelberg -New York, 1972. Zbl0265.22020MR498999
- [76] H. Yamashita: Multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series, Adv. Stud. in Pure Math. Vol. 14, pp. 31-121, Kinokuniya Book Store, 1986. Zbl0759.22018MR1039835
- [77] G.J. Zuckerman: Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math.106 (1977), 295-308. Zbl0384.22004MR457636
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.