Théorie de Schreier supérieure

Lawrence Breen

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 5, page 465-514
  • ISSN: 0012-9593

How to cite

top

Breen, Lawrence. "Théorie de Schreier supérieure." Annales scientifiques de l'École Normale Supérieure 25.5 (1992): 465-514. <http://eudml.org/doc/82325>.

@article{Breen1992,
author = {Breen, Lawrence},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {; ; cohomology with non-abelian coefficients; monoidal category; coherence condition; crossed square; crossed module; homotopy classification of topological fibrations},
language = {fre},
number = {5},
pages = {465-514},
publisher = {Elsevier},
title = {Théorie de Schreier supérieure},
url = {http://eudml.org/doc/82325},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Breen, Lawrence
TI - Théorie de Schreier supérieure
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 5
SP - 465
EP - 514
LA - fre
KW - ; ; cohomology with non-abelian coefficients; monoidal category; coherence condition; crossed square; crossed module; homotopy classification of topological fibrations
UR - http://eudml.org/doc/82325
ER -

References

top
  1. [1] J. BENABOU, Catégories avec multiplication (C. R. Acad. Sc. Paris, vol. 256, 1963, p. 1887-1890). Zbl0111.02201MR26 #6225
  2. [2] A. J. BERRICK, Group Extensions and their Trivialisations (L'Enseignement Math., vol. 31, 1985, p. 151-172). Zbl0584.20023MR87d:20042
  3. [3] P. BOOTH, P. HEATH, C. MORGAN et R. PICCININI, H-Spaces of Self-Equivalences of Fibrations and Bundles (Proc. London, Math. Soc., vol. 49, 1984, p. 111-127). Zbl0525.55005MR85k:55013
  4. [4] L. BREEN, Bitorseurs et cohomologie non-abélienne, dans The Grothendieck Festchrift I (Progress in Mathematics, vol. 86, 1990, p. 401-476, Birkhäuser). Zbl0743.14034MR92m:18019
  5. [5] K. S. BROWN, Cohomology of Groups (Graduate Texts in Mathematics, vol. 87, Springer-Verlag, 1982). Zbl0584.20036MR83k:20002
  6. [6] R. BROWN et N. D. GILBERT, Algebraic Models of 3-Types and Automorphism Structures for Crossed Modules (Proc. London Math. Soc., vol. 59, 1989, p. 51-73). Zbl0645.18007MR90e:18015
  7. [7] M. BULLEJOS et A. CEGARRA, A 3-Dimensional Non-Abelian Cohomology of Groups with Applications to Homotopy Classification of Continuous Maps (Canad. J. Math., vol. 43, (2), 1991, p. 1-32). Zbl0726.18009MR92k:18012
  8. [8] D. CONDUCHÉ, Modules croisés généralisés de longueur 2 (J. Pure Applied Alg., vol. 34, 1984, p. 155-178). Zbl0554.20014MR86g:20068
  9. [9] P. DEDECKER, Les foncteurs Extπ, H²π et H²π non abélien (C. R. Acad. Sci. Paris., vol. 258, 1964, p. 4891-4894). Zbl0124.01402MR29 #5873
  10. [10] P. DEDECKER, Algèbre homologique non-abélienne (Colloque de Topologie Algébrique, Centre Belge de Recherches Mathématiques, Bruxelles, 1964). Zbl0168.26805
  11. [11] P. DEDECKER, Three Dimensional Non Abelian Cohomology Groups, dans Category Theory, Homology Theory and their Applications II (Lecture Notes in Math., vol. 92, 1969, p. 32-64, Springer-Verlag). Zbl0249.18027MR41 #8493
  12. [12] P. DELIGNE, La formule de dualité globale, exposé XVIII de SGA 4 (Lecture Notes in Math., vol. 305, Springer-Verlag, 1973). Zbl0259.14006MR50 #7132
  13. [13] M. DROR et A. ZABRODSKY, Unipotency and Nilpotency in Homotopy Equivalences (Topology, vol. 18, 1979, p. 187-197). Zbl0417.55008MR81g:55008
  14. [14] J. DUSKIN, An Outline of a Theory of Higher Dimensional Descent (Bull. de la Soc. Math. de Belgique (série A), vol. 41, 1989, p. 249-277). Zbl0781.18004MR91c:18013
  15. [15] S. EILENBERG et S. MACLANE, Cohomology theory in abstract groups I (Ann. of Math., vol. 47, 1948, p. 51-78). Zbl0029.34001MR8,367f
  16. [16] S. EILENBERG et S. MACLANE, On the Groups H(П, n) I, II (Ann. of Math., vol. 58, 1953, p. 55-106 et vol. 60, 1954, p. 49-139). Zbl0055.41704MR15,54b
  17. [17] G. ELLIS et R. STEINER, Higher Dimensional Crossed Modules and the Homotopy Groups of (n + 1)-ads (J. Pure Appl. Algebra, vol. 46, 1987, p. 117-136). Zbl0622.55010MR88j:55010
  18. [18] J. GIRAUD, Cohomologie non abélienne (Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 179, Springer-Verlag, 1971). Zbl0226.14011MR49 #8992
  19. [19] A. GROTHENDIECK, Biextensions de faisceaux de groupes, exposé VII de SGA7I, Groupes de monodromie en géométrie algébrique (Lecture notes in Math., vol. 288, Springer-Verlag, 1972). Zbl0247.14011MR50 #7134
  20. [20] M. HAKIM, Topos annelé et schémas relatifs (Ergebnisse der Math. und ihrer Grenzgebiete, vol. 64, Springer Verlag, 1972). Zbl0246.14004MR51 #500
  21. [21] R. O. HILL Jr., Moore-Postnikov Towers for Fibrations in which π1 (fiber) is Non-Abelian (Pacific J. Math., vol. 62, 1976, p. 141-148). Zbl0328.55013
  22. [22] D. F. HOLT, An Interpretation of the Cohomology Groups Hn(G, A) (J. Algebra, vol. 60, 1979, p. 307-320). Zbl0699.20040MR80m:20040
  23. [23] J. HUEBSCHMANN, Crossed n-fold Extensions of Groups and Cohomology (Comment. Math. Helvetici, vol. 55, 1980, p. 302-314). Zbl0443.18019MR82e:20063
  24. [24] L. ILLUSIE, Complexe cotangent et déformations I, II (Lecture notes in Math., vol. 239, 283, Springer-Verlag, 1971, 1972). Zbl0224.13014MR58 #10886a
  25. [25] A. JOYAL et R. STREET, Braided Monoidal Categories, Preprint. 
  26. [26] G. M. KELLEY et M. LAPLAZA, Coherence for Compact Closed Categories (Lecture notes in Math., vol. 281, Springer-Verlag, 1972). 
  27. [27] A. LEGRAND, Homotopie des espaces de sections (Lecture notes in Math., vol. 941, Springer-Verlag, 1982). Zbl0535.55001MR83m:55028
  28. [28] J.-L. LODAY, Spaces with Finitely Many Non Trivial Homotopy Groups (J. Pure and Appl. Alg., vol. 24, 1982, p. 179-202). Zbl0491.55004MR83i:55009
  29. [29] S. MACLANE, Natural Associativity and Commutativity (Rice University Studies, vol. 49, 1963, p. 28-46), reproduit dans les Selected Papers, I. KAPLANSKY éd., Springer Verlag, 1979. Zbl0244.18008MR30 #1160
  30. [30] S. MACLANE, Categories for the Working Mathematician (Graduate texts in Mathematics, vol. 5, Springer-Verlag, 1972). 
  31. [31] J. P. MAY, Simplicial Objects in Algebraic Topology, Van Nostrand, 1967. Zbl0165.26004MR36 #5942
  32. [32] J. P. MAY, E∞-Spaces, Group Completions and Permutative Categories, dans New Developments in Topology, G. SEGAL éd., (London Math. Soc. Lecture note series, vol. 11, 1974, p. 61-93, Cambridge University Press). Zbl0281.55003MR49 #3915
  33. [33] J. P. MAY, Classifying Spaces and Fibrations (Memoirs of the A.M.S., vol. 155, 1975). Zbl0321.55033MR51 #6806
  34. [34] I. MOERDIJK, Morita Equivalence for Continuous Groups (Math. Proc. Cambr. Phil. Soc., vol. 103, 1988, p. 97-115). Zbl0648.22001MR88j:22001
  35. [35] G. MOORE et N. SEIBERG, Classical and Quantum Field Theory, (Comm. Math. Phys., vol. 123, 1989, p. 177-254). Zbl0694.53074MR90e:81216
  36. [36] K. NORRIE, Actions and Automorphisms of Crossed Modules (Bull. S.M.F., vol. 118, 1989, p. 101-119). Zbl0719.20018MR91m:18010
  37. [37] R. A. PICCINNINI éd., Groups of Self-Equivalences and Related Topics (Lecture notes in Math., vol. 1425, Springer-Verlag, 1990). Zbl0695.00020MR91e:55001
  38. [38] N. SAAVEDRA RIVANO, Catégories tannakiennes (Lecture notes in Math., vol. 265, Springer-Verlag, 1972). Zbl0241.14008MR49 #2769
  39. [39] J. E. ROBERTS, Mathematical Aspects of Local Cohomology (Colloquium on Operator Algebras and their Applications to Mathematical Physics, Colloque International C.N.R.S., vol. 274, Marseille, 1977). Zbl0455.55005MR81e:18017
  40. [40] O. SCHREIER, Uber die Erweiterung von Gruppen I (Monatsh. Math. Phys., vol. 34, 1926, p. 165-180) ; II. (Abh. Math. Sem. Hamburg, vol. 4, 1926, p. 321-346). JFM52.0113.04
  41. [41] G. SEGAL, Cohomology of Topological Groups (Symposia Mat. IV, 1970, p. 377-387, Istituto Nazionale di Alta Matematic, Bologna). Zbl0223.57034MR43 #6292
  42. [42] J.-P. SERRE, Groupes algébriques et corps de classe (Actualités scientifiques et Industrielles, Hermann, 1959). Zbl0097.35604MR21 #1973
  43. [43] HOANG XUAN SINH, Gr-catégories (thèse de doctorat, Université Paris-VII, 1975). 
  44. [44] J. STASHEFF, Homotopy Associativity of H-Spaces I (Trans. A.M.S., vol. 108, 1963, p. 275-292). Zbl0114.39402MR28 #1623
  45. [45] J. STASHEFF, H-Spaces from a Homotopy Point of View (Lecture Notes in Math., vol. 161, Springer-Verlag, 1970). Zbl0205.27701MR42 #5261
  46. [46] J. STASHEFF, H-Spaces and Classifying Spaces : Foundations and Recent Developments, dans Algebraic Topology (Proc. Symp. Pure Math., vol. 22, 1971, p. 247-272, A.M.S.). Zbl0234.55020MR47 #9612
  47. [47] K. ULBRICH, Group Cohomology for Picard Categories (J. Alg., vol. 91, 1984, p. 464-498). Zbl0554.18005MR86h:18003
  48. [48] D. YETTER, Category Theoretic Representations of Knotted Graphs in S3 [Advances in Mathematics (à paraître)]. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.