Hyperbolic components of polynomials with a fixed critical point of maximal order
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 6, page 901-949
- ISSN: 0012-9593
Access Full Article
topHow to cite
topRoesch, Pascale. "Hyperbolic components of polynomials with a fixed critical point of maximal order." Annales scientifiques de l'École Normale Supérieure 40.6 (2007): 901-949. <http://eudml.org/doc/82730>.
@article{Roesch2007,
author = {Roesch, Pascale},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {component; polynomial; fixed point; critical point; Jordan curve},
language = {eng},
number = {6},
pages = {901-949},
publisher = {Elsevier},
title = {Hyperbolic components of polynomials with a fixed critical point of maximal order},
url = {http://eudml.org/doc/82730},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Roesch, Pascale
TI - Hyperbolic components of polynomials with a fixed critical point of maximal order
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 6
SP - 901
EP - 949
LA - eng
KW - component; polynomial; fixed point; critical point; Jordan curve
UR - http://eudml.org/doc/82730
ER -
References
top- [1] Alhfors L.V., Lectures on Quasi-Conformal Mappings, Wadsworth & Brook/Cole, Advanced Books & Software, Monterey, 1987.
- [2] Blanchard P., Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc.11 (1984) 85-141. Zbl0558.58017MR741725
- [3] Branner B., Puzzles and para-puzzles of quadratic and cubic polynomials, Proc. Symp. Appl. Math.49 (1994) 31-69. Zbl0853.58087MR1315533
- [4] Branner B., Hubbard J.H., The iteration of cubic polynomials, Part. 1: The global topology of the parameter space, Acta Math. 160 (1988) 143-206. Zbl0668.30008MR945011
- [5] Douady A., Hubbard J.H., Étude dynamique des polynômes complexes I & II, Publ. Math. d'Orsay (1984) & (1985). Zbl0552.30018
- [6] Douady A., Hubbard J.H., On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup.18 (1985) 287-343. Zbl0587.30028MR816367
- [7] Faught D., Local connectivity in a family of cubic polynomials, Ph.D. Thesis, Cornell University, 1992.
- [8] Goldberg L.R., Milnor J., Fixed points of polynomial maps. Part II. Fixed point portraits, Ann. Sci. Éc. Norm. Sup.26 (1993) 51-98. Zbl0771.30028MR1209913
- [9] Hubbard J.H., Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in: Goldberg L.R., Phillips V.A. (Eds.), Topological Methods in Modern Mathematics, Publish or Perish, 1993, pp. 467-511. Zbl0797.58049MR1215974
- [10] Levin G., Przytycki F., External rays to periodic points, Israel J. Math.94 (1996) 29-57. Zbl0854.30020MR1394566
- [11] Mc Mullen C., The Mandelbrot set is universal, in: Lei Tan (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000. Zbl1062.37042MR1765082
- [12] Milnor J., Dynamics in One Complex Variable, Vieweg, 1999, 2nd ed. 2000. Zbl0946.30013MR1721240
- [13] Milnor J., Local connectivity of Julia sets: Expository lectures, in: Lei Tan (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 67-116. Zbl1107.37305MR1765085
- [14] Milnor J., On cubic polynomial maps with periodic critical point, preprint (1991), to be published dedicated to JHH.
- [15] Naĭshul' V.A., Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in and , Trans. Moscow Math. Soc.42 (1983) 239-250. Zbl0527.58035MR656288
- [16] Petersen C.L., On the Pommerenke–Levin–Yoccoz inequality, Ergod. Th. & Dynam. Sys.13 (1993) 785-806. Zbl0802.30022
- [17] Roesch P., Puzzles de Yoccoz pour les applications à allure rationnelle, L'Enseignement Mathématique45 (1999) 133-168. Zbl0977.37023MR1703365
- [18] Roesch P., Holomorphic motions and puzzles (following M. Shishikura), in: Lei Tan (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 117-132. Zbl1063.37042MR1765086
- [19] Słodkowski Z., Extensions of holomorphic motions, Ann. Scuola Norm. Sup. Cl. Sci.22 (1995) 185-210. Zbl0835.30012
- [20] Yoccoz J.-C., Petits diviseurs en dimension 1, Astérisque231 (1995). Zbl0836.30001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.