Geography of the cubic connectedness locus : intertwining surgery
Adam Epstein; Michael Yampolsky
Annales scientifiques de l'École Normale Supérieure (1999)
- Volume: 32, Issue: 2, page 151-185
- ISSN: 0012-9593
Access Full Article
topHow to cite
topEpstein, Adam, and Yampolsky, Michael. "Geography of the cubic connectedness locus : intertwining surgery." Annales scientifiques de l'École Normale Supérieure 32.2 (1999): 151-185. <http://eudml.org/doc/82487>.
@article{Epstein1999,
author = {Epstein, Adam, Yampolsky, Michael},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {products of Mandelbrot sets; polynomial dynamics; polynomial-like maps; fractals; quadratic polynomials; cubic polynomials; surgical tools; intertwining surgery; construction of a cubic polynomial; quasiconformal interpolation; renormalization; birenormalizable cubics; properness; injectivity; measure of the residual Julia set; discontinuity at the corner point; asymptotic geography of the cubic connectedness locus; quasiconformal surgery techniques},
language = {eng},
number = {2},
pages = {151-185},
publisher = {Elsevier},
title = {Geography of the cubic connectedness locus : intertwining surgery},
url = {http://eudml.org/doc/82487},
volume = {32},
year = {1999},
}
TY - JOUR
AU - Epstein, Adam
AU - Yampolsky, Michael
TI - Geography of the cubic connectedness locus : intertwining surgery
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 2
SP - 151
EP - 185
LA - eng
KW - products of Mandelbrot sets; polynomial dynamics; polynomial-like maps; fractals; quadratic polynomials; cubic polynomials; surgical tools; intertwining surgery; construction of a cubic polynomial; quasiconformal interpolation; renormalization; birenormalizable cubics; properness; injectivity; measure of the residual Julia set; discontinuity at the corner point; asymptotic geography of the cubic connectedness locus; quasiconformal surgery techniques
UR - http://eudml.org/doc/82487
ER -
References
top- [Bi1] B. BIELEFELD, Changing the order of critical points of polynomials using quasiconformal surgery, Thesis, Cornell, 1989.
- [Bi2] B. BIELEFELD, Questions in quasiconformal surgery, pp. 2-8, in Conformal Dynamics Problem List, ed. B. Bielefeld, Stony Brook IMS Preprint 1990/1991, and in part 2 of Linear and Complex Analysis Problem Book 3, ed. V. Havin and N. Nikolskii, Lecture Notes in Math., Vol. 1574, Springer-Verlag, 1994.
- [BD] B. BRANNER and A. DOUADY, Surgery on complex polynomials, in Proceedings of the Symposium on Dynamical Systems, Mexico, 1986, Lecture Notes in Math., Vol. 1345, Springer-Verlag, 1987. Zbl0668.58026
- [BF] B. BRANNER and N. FAGELLA, Homeomorphisms between limbs of the Mandelbrot set, MSRI Preprint 043-95.
- [BH] B. BRANNER and J. H. HUBBARD, The iteration of cubic polynomials. Part I : The global topology of parameter space, Acta Mathematica, Vol. 160, 1988, pp. 143-206. Zbl0668.30008MR90d:30073
- [Bu] X. BUFF, Extension d'homéomorphismes de compacts de ℂ, Manuscript, and personal communication.
- [Do] A. DOUADY, Does a Julia set depend continuously on a polynomial ?, Proc. of Symp. in Applied Math., Vol. 49, 1994. Zbl0934.30023MR1315535
- [DH1] A. DOUADY and J. H. HUBBARD, Étude dynamique des polynômes complexes, I & II, Publ. Math. Orsay, 1984-1985. Zbl0552.30018
- [DH2] A. DOUADY and J. H. HUBBARD, On the dynamics of polynomial-like mappings, Ann. scient. Éc. Norm. Sup., 4e série, Vol. 18, 1985, pp. 287-343. Zbl0587.30028MR87f:58083
- [Ep] A. EPSTEIN, Counterexamples to the quadratic mating conjecture, Manuscript in preparation.
- [Fa] D. FAUGHT, Local connectivity in a family of cubic polynomials, Thesis, Cornell 1992.
- [GM] L. GOLDBERG and J. MILNOR, Fixed points of polynomial maps II, Ann. Scient. Éc. Norm. Sup., 4e série, Vol. 26, 1993, pp. 51-98. Zbl0771.30028MR95d:58107
- [Haï] P. HAÏSSINSKY, Chirurgie croisée, Manuscript, 1996.
- [Hub] J. H. HUBBARD, Local connectivity of Julia sets and bifurcation loci : three theorems of J.-C. Yoccoz, in Topological methods in Modern Mathematics, Publish or Perish, 1992, pp. 467-511 and 375-378.
- [Ki] J. KIWI, Non-accessible critical points of Cremer polynomials, IMS at Stony Brook Preprint 1995/2.
- [La] P. LAVAURS, Systèmes dynamiques holomorphes : Explosion de points périodiques, Thèse, Université de Paris-Sud, 1989.
- [LV] O. LEHTO and K. I. VIRTANEN, Quasiconformal Mappings in the Plane, Springer-Verlag, 1973. Zbl0267.30016MR49 #9202
- [Lyu1] M. LYUBICH, On typical behavior of the trajectories of a rational mapping of the sphere, Soviet. Math. Dokl., Vol. 27, 1983, No. 1, pp. 22-25. Zbl0595.30034MR84f:30036
- [Lyu2] M. LYUBICH, On the Lebesgue measure of a quadratic polynomial, IMS at Stony Brook Preprint 1991/2010.
- [Lyu3] M. LYUBICH, Dynamics of quadratic polynomials, I. Combinatorics and geometry of the Yoccoz puzzle, MSRI Preprint 026-95.
- [MSS] R. MAÑ;É, P. SAD and D. SULLIVAN, On the dynamics of rational maps, Ann. Scient. Éc. Norm. Sup., 4e série, Vol. 16, 1983, pp. 51-98. Zbl0524.58025
- [McM1] C. MCMULLEN, Complex Dynamics and Renormalization, Annals of Math. Studies, Princeton Univ. Press, 1993.
- [McM2] C. MCMULLEN, Renormalization and 3-Manifolds which Fiber over the Circle, Annals of Math. Studies, Princeton Univ. Press, 1996. Zbl0860.58002MR97f:57022
- [McS] C. MCMULLEN and D. SULLIVAN, Quasiconformal homeomorphisms and dynamics III : The Teichmüller space of a rational map, Preprint, 1996.
- [Mil1] J. MILNOR, Dynamics in one complex variable : Introductory lectures, IMS at Stony Brook Preprint 1990/1995.
- [Mil2] J. MILNOR, Remarks on iterated cubic maps, Experimental Math., Vol. 1 1992, pp. 5-24. Zbl0762.58018MR94c:58096
- [Mil3] J. MILNOR, On cubic polynomials with periodic critical point, Manuscript, 1991.
- [Mil4] J. MILNOR, Hyperbolic components in spaces of polynomial maps, with an appendix by A. Poirier, IMS at Stony Brook Preprint 1992/1993.
- [Mil5] J. MILNOR, Periodic orbits, external rays and the Mandelbrot set ; An expository account, Preprint, 1995.
- [NS] S. NAKANE and D. SCHLEICHER, Non-local connectivity of the tricorn and multicorns, in Proceedings of the International Conference on Dynamical Systems and Chaos, World Scientific, 1994. Zbl0989.37537
- [Sh] M. SHISHIKURA, The parabolic bifurcation of rational maps, Colóquio Brasileiro de Matemática 19, IMPA, 1992.
- [Win] R. WINTERS, Bifurcations in families of antiholomorphic and biquadratic maps, Thesis, Boston University, 1989.
- [Yar] B. YARRINGTON, Local connectivity and Lebesgue measure of polynomial Julia sets, Thesis, SUNY at Stony Brook, 1995.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.