On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits
Open Mathematics (2005)
- Volume: 3, Issue: 3, page 398-403
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMałgorzata Stawiska. "On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits." Open Mathematics 3.3 (2005): 398-403. <http://eudml.org/doc/268811>.
@article{MałgorzataStawiska2005,
abstract = {We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.},
author = {Małgorzata Stawiska},
journal = {Open Mathematics},
keywords = {32H50; 37F15; 34M45},
language = {eng},
number = {3},
pages = {398-403},
title = {On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits},
url = {http://eudml.org/doc/268811},
volume = {3},
year = {2005},
}
TY - JOUR
AU - Małgorzata Stawiska
TI - On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 398
EP - 403
AB - We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.
LA - eng
KW - 32H50; 37F15; 34M45
UR - http://eudml.org/doc/268811
ER -
References
top- [1] E. Bedford and M. Jonsson: “Dynamics of regular polynomial endomorphisms of ℂk ”, Amer. J. Math., Vol. 122, (2000), pp. 153–212. Zbl0941.37027
- [2] E. Bedford and M. Jonsson: “Potential theory in complex dynamics: regular polynomial mappings of ℂk ”, In: Complex analysis and geometry (Paris 1997), Progr. Math. Vol. 188, Birkhäuser, Basel, 2000, pp. 203–211. Zbl0961.32019
- [3] J.-Y. Briend and J. Duval: “Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de ℂℙk ”, Acta Math., Vol. 182(2), (1999), pp. 143–157. http://dx.doi.org/10.1007/BF02392572
- [4] A. Candel: “Uniformization of surface laminations”, Ann. Scient. Éc. Norm. Sup., Seria 4, Vol. 26, (1993), pp. 489–516. Zbl0785.57009
- [5] A. Douady and J.H. Hubbard: “Étude dynamique des polynomes complexes I”, Publ. Math. Orsay, (1984). Zbl0552.30018
- [6] J.E. Fornaess and N. Sibony: “Complex dynamics in higher dimension. Notes partially written by Estela A. Gavosto”, In: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439, Complex Potential Theory (Montreal, PQ, 1993), Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186.
- [7] J.E. Fornaess and N. Sibony: “Oka's inequality for currents and applications”, Math. Ann., Vol. 301, (1998), pp. 339–419. Zbl0832.32010
- [8] J.E. Fornaess and N. Sibony: “Dynamics of ℙ2 (Examples)”, In: Laminations and foliations in dynamics, geometry and topology, Contemporary Mathematics 269, AMS, 2001, pp. 47–87.
- [9] S. Heinemann: “Julia sets for endomorphisms of ℂn ”, Ergod. Th. & Dynam. Sys., Vol. 16, (1996), pp. 1275–1295.
- [10] J.H. Hubbard and P. Papadopol: “Superattractive fixed points in ℂn ”, Indiana Univ. Math. J., Vol. 43(1), (1994), pp. 321–365. http://dx.doi.org/10.1512/iumj.1994.43.43014 Zbl0858.32023
- [11] S.L. Hruska: “Constructing an expanding metrics for the dynamical systems in one complex variable”, Nonlinearity, Vol. 18(1), (2005), pp. 81–100. http://dx.doi.org/10.1088/0951-7715/18/1/005
- [12] M. Klimek: “Metrics associated with extremal plurisubharmonic functions”, Proc. Amer. Math. Soc., Vol. 123(9), (1995), pp. 2763–2770. http://dx.doi.org/10.2307/2160572 Zbl0935.32028
- [13] S. Lang: Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. Zbl0628.32001
- [14] S. Łojasiewicz: “Sur les trajectoires du gradient d'une fonction analytique”, Univ. Stud. Bologna, (1983), pp. 115–117. Zbl0606.58045
- [15] S. Łojasiewicz: Introduction to complex analytic geometry, Translated from the Polish by Maciej Klimek, Birkhäuser Verlag, Basel, 1991. Zbl0747.32001
- [16] J. Milnor: Dynamics in one complex variable. Introductory lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999. Zbl0946.30013
- [17] D. Ruelle: “Repellers for real analytic maps”, Ergod. Th. & Dynam. Sys., Vol. 2, (1982), pp. 99–107. http://dx.doi.org/10.1017/S0143385700009603
- [18] N. Sibony: “Dynamique des applications rationnelles de ℙk ”, In: Dynamique et géométrie complexes, Panoramas et Syntheses, Vol. 8, SMF, 1999, pp. 97–185.
- [19] M. Stawiska: Repellers for regular polynomial endomorphisms of ℂk Thesis (PhD), Northwestern University, 2001.
- [20] T. Ueda: “Critical orbits of holomorphic maps on projective spaces”, J. Geom. Anal., Vol. 8(2), (1998), pp. 319–334. Zbl0957.32009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.