On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits

Małgorzata Stawiska

Open Mathematics (2005)

  • Volume: 3, Issue: 3, page 398-403
  • ISSN: 2391-5455

Abstract

top
We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.

How to cite

top

Małgorzata Stawiska. "On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits." Open Mathematics 3.3 (2005): 398-403. <http://eudml.org/doc/268811>.

@article{MałgorzataStawiska2005,
abstract = {We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.},
author = {Małgorzata Stawiska},
journal = {Open Mathematics},
keywords = {32H50; 37F15; 34M45},
language = {eng},
number = {3},
pages = {398-403},
title = {On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits},
url = {http://eudml.org/doc/268811},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Małgorzata Stawiska
TI - On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 398
EP - 403
AB - We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.
LA - eng
KW - 32H50; 37F15; 34M45
UR - http://eudml.org/doc/268811
ER -

References

top
  1. [1] E. Bedford and M. Jonsson: “Dynamics of regular polynomial endomorphisms of ℂk ”, Amer. J. Math., Vol. 122, (2000), pp. 153–212. Zbl0941.37027
  2. [2] E. Bedford and M. Jonsson: “Potential theory in complex dynamics: regular polynomial mappings of ℂk ”, In: Complex analysis and geometry (Paris 1997), Progr. Math. Vol. 188, Birkhäuser, Basel, 2000, pp. 203–211. Zbl0961.32019
  3. [3] J.-Y. Briend and J. Duval: “Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de ℂℙk ”, Acta Math., Vol. 182(2), (1999), pp. 143–157. http://dx.doi.org/10.1007/BF02392572 
  4. [4] A. Candel: “Uniformization of surface laminations”, Ann. Scient. Éc. Norm. Sup., Seria 4, Vol. 26, (1993), pp. 489–516. Zbl0785.57009
  5. [5] A. Douady and J.H. Hubbard: “Étude dynamique des polynomes complexes I”, Publ. Math. Orsay, (1984). Zbl0552.30018
  6. [6] J.E. Fornaess and N. Sibony: “Complex dynamics in higher dimension. Notes partially written by Estela A. Gavosto”, In: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439, Complex Potential Theory (Montreal, PQ, 1993), Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186. 
  7. [7] J.E. Fornaess and N. Sibony: “Oka's inequality for currents and applications”, Math. Ann., Vol. 301, (1998), pp. 339–419. Zbl0832.32010
  8. [8] J.E. Fornaess and N. Sibony: “Dynamics of ℙ2 (Examples)”, In: Laminations and foliations in dynamics, geometry and topology, Contemporary Mathematics 269, AMS, 2001, pp. 47–87. 
  9. [9] S. Heinemann: “Julia sets for endomorphisms of ℂn ”, Ergod. Th. & Dynam. Sys., Vol. 16, (1996), pp. 1275–1295. 
  10. [10] J.H. Hubbard and P. Papadopol: “Superattractive fixed points in ℂn ”, Indiana Univ. Math. J., Vol. 43(1), (1994), pp. 321–365. http://dx.doi.org/10.1512/iumj.1994.43.43014 Zbl0858.32023
  11. [11] S.L. Hruska: “Constructing an expanding metrics for the dynamical systems in one complex variable”, Nonlinearity, Vol. 18(1), (2005), pp. 81–100. http://dx.doi.org/10.1088/0951-7715/18/1/005 
  12. [12] M. Klimek: “Metrics associated with extremal plurisubharmonic functions”, Proc. Amer. Math. Soc., Vol. 123(9), (1995), pp. 2763–2770. http://dx.doi.org/10.2307/2160572 Zbl0935.32028
  13. [13] S. Lang: Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. Zbl0628.32001
  14. [14] S. Łojasiewicz: “Sur les trajectoires du gradient d'une fonction analytique”, Univ. Stud. Bologna, (1983), pp. 115–117. Zbl0606.58045
  15. [15] S. Łojasiewicz: Introduction to complex analytic geometry, Translated from the Polish by Maciej Klimek, Birkhäuser Verlag, Basel, 1991. Zbl0747.32001
  16. [16] J. Milnor: Dynamics in one complex variable. Introductory lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999. Zbl0946.30013
  17. [17] D. Ruelle: “Repellers for real analytic maps”, Ergod. Th. & Dynam. Sys., Vol. 2, (1982), pp. 99–107. http://dx.doi.org/10.1017/S0143385700009603 
  18. [18] N. Sibony: “Dynamique des applications rationnelles de ℙk ”, In: Dynamique et géométrie complexes, Panoramas et Syntheses, Vol. 8, SMF, 1999, pp. 97–185. 
  19. [19] M. Stawiska: Repellers for regular polynomial endomorphisms of ℂk Thesis (PhD), Northwestern University, 2001. 
  20. [20] T. Ueda: “Critical orbits of holomorphic maps on projective spaces”, J. Geom. Anal., Vol. 8(2), (1998), pp. 319–334. Zbl0957.32009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.