On the Iwahori-Matsumoto involution and applications

Chris Jantzen

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 5, page 527-547
  • ISSN: 0012-9593

How to cite

top

Jantzen, Chris. "On the Iwahori-Matsumoto involution and applications." Annales scientifiques de l'École Normale Supérieure 28.5 (1995): 527-547. <http://eudml.org/doc/82393>.

@article{Jantzen1995,
author = {Jantzen, Chris},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic group; Levi group; representation; Weyl group; Iwahori subgroup; Iwahori-Matsumoto involution; Hecke algebra; intertwining operators},
language = {eng},
number = {5},
pages = {527-547},
publisher = {Elsevier},
title = {On the Iwahori-Matsumoto involution and applications},
url = {http://eudml.org/doc/82393},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Jantzen, Chris
TI - On the Iwahori-Matsumoto involution and applications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 5
SP - 527
EP - 547
LA - eng
KW - -adic group; Levi group; representation; Weyl group; Iwahori subgroup; Iwahori-Matsumoto involution; Hecke algebra; intertwining operators
UR - http://eudml.org/doc/82393
ER -

References

top
  1. [Art1] J. ARTHUR, Unipotent automorphic representations : conjectures, Astérisque, Vol. 171-172, 1989, pp. 13-71. Zbl0728.22014MR91f:22030
  2. [Art2] J. ARTHUR, Intertwining operators and residues 1. weighted characters, J. Func. Anal., Vol. 84, pp. 19-84. Zbl0679.22011MR90j:22018
  3. [Art3] J. ARTHUR, On elliptic tempered characters (preprint). 
  4. [B-Z] I. BERNSTEIN and A. ZELEVINSKY, Induced representations of reductive p-adic groups I, Ann. Sci. École Norm. Sup., Vol. 10, 1977, pp. 441-472. Zbl0412.22015MR58 #28310
  5. [Bor] A. BOREL, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math, Vol. 35, 1976, pp. 233-259. Zbl0334.22012MR56 #3196
  6. [Cas1] W. CASSELMAN, Introduction to the theory of admissible representation of p-adic reductive groups (preprint). 
  7. [Cas2] W. CASSELMAN, The Steinberg character as a true character, Proceedings of Symposia in Pure Mathematics, Vol. 26, 1973, pp. 413-417. Zbl0289.22017MR49 #3039
  8. [Cas3] W. CASSELMAN, The unramified principal series of p-adic groups I, Comp. Math., Vol. 40, 1980, pp. 387-406. Zbl0472.22004MR83a:22018
  9. [Gol] D. GOLDBERG, Reducibility of induced representations for Sp(2n) and SO(n) (preprint). 
  10. [I-M] N. IWAHORI and H. MATSUMOTO, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. IHES, Vol. 25, 1965, pp. 5-48. Zbl0228.20015MR32 #2486
  11. [Keys] D. KEYS, L-indistinguishibility and R-groups for quasi-split groups : Unitary groups of even dimension, Ann. Sci. École Norm. Sup., Vol. 20, 1987, pp. 31-64. Zbl0634.22014
  12. [Lus] G. LUSZTIG, Representations of affine Hecke algebras, Astérisque, Vol. 171-172, 1989, pp. 73-84. Zbl0699.22027MR90k:22028
  13. [M-W] C. MOEGLIN and J.-L. WALDSPURGER, Sur l'involution de Zelevinski, J. reine angew. Math., Vol. 372, 1986, pp. 136-177. Zbl0594.22008MR88c:22019
  14. [Re1] M. REEDER, On certain Iwahori invariants in the unramified principal series, Pac. J. Math., Vol. 153, 1992, pp. 313-342. Zbl0804.22010MR93b:22033
  15. [Re2] M. REEDER, Nonstandard intertwining operators and the structure of unramified principal series representations (preprint). 
  16. [Rod] F. RODIER, Sur les représentations non ramifiées des groupes réductifs p-adiques ; l'exemple de GSp(4), Bull. Soc. Math. France, Vol. 116, 1988, pp. 15-42. Zbl0662.22011MR89i:22033
  17. [Sha] F. SHAHIDI, A proof of Langlands' conjecture on Plancherel measures ; complementary series for p-adic groups, Ann. of Math., Vol. 132, 1990, pp. 273-330. Zbl0780.22005MR91m:11095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.