The Aubert involution and R-groups

Dubravka Ban

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 5, page 673-693
  • ISSN: 0012-9593

How to cite

top

Ban, Dubravka. "The Aubert involution and R-groups." Annales scientifiques de l'École Normale Supérieure 35.5 (2002): 673-693. <http://eudml.org/doc/82586>.

@article{Ban2002,
author = {Ban, Dubravka},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Aubert involution; duality; -adic group; group},
language = {eng},
number = {5},
pages = {673-693},
publisher = {Elsevier},
title = {The Aubert involution and R-groups},
url = {http://eudml.org/doc/82586},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Ban, Dubravka
TI - The Aubert involution and R-groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 5
SP - 673
EP - 693
LA - eng
KW - Aubert involution; duality; -adic group; group
UR - http://eudml.org/doc/82586
ER -

References

top
  1. [1] Arthur J, Unipotent automorphic representations: conjectures, Astérisque171–172 (1989) 13-71. Zbl0728.22014MR1021499
  2. [2] Arthur J, Intertwining operators and residues 1.weighted characters, J. Func. Anal.84 (1989) 19-84. Zbl0679.22011MR999488
  3. [3] Arthur J, On elliptic tempered characters, Acta Math.171 (1993) 73-138. Zbl0822.22011MR1237898
  4. [4] Aubert A.-M, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc.347 (1995) 2179-2189, Trans. Amer. Math. Soc.348 (1996) 4687-4690, Erratum. Zbl0861.22012
  5. [5] Ban D, Jacquet modules of parabolically induced representations and Weyl groups, Can. J. Math.53 (4) (2001) 675-695. Zbl1002.22010MR1848502
  6. [6] Ban D, Parabolic induction and Jacquet modules of representations of O(2n,F), Glasnik Mat.34 (54) (1999) 147-185. Zbl0954.22013MR1739616
  7. [7] Ban D, Self-duality in the case of SO(2n,F), Glasnik Mat.34 (54) (1999) 187-196. Zbl0954.22012MR1739617
  8. [8] Barbasch D, Moy A, A unitarity criterion for p-adic groups, Invent. Math.98 (1) (1989) 19-37. Zbl0676.22012MR1010153
  9. [9] Bernstein I.N, Zelevinsky A.V, Induced representations of reductive p-adic groups, I, Ann. Sci. École Norm. Sup.10 (1977) 441-472. Zbl0412.22015MR579172
  10. [10] Borel A, Linear Algebraic Groups, Springer-Verlag, 1991. Zbl0726.20030MR1102012
  11. [11] Bourbaki N, Groupes et algèbres de Lie, Ch. 4, Paris, Hermann, 1968. Zbl0483.22001MR240238
  12. [12] Casselman W., Introduction to the theory of admissible representations of p-adic reductive groups, Preprint. 
  13. [13] Goldberg D, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math.116 (1994) 1101-1151. Zbl0851.22021MR1296726
  14. [14] Goldberg D., Shahidi F., Automorphic L-functions, intertwining operators and the irreducible tempered representations of p-adic groups, Preprint. 
  15. [15] Harish-Chandra, Harmonic analysis on reductive p-adic groups, Proc. Symp. Pure Math.26 (1974) 167-192. Zbl0289.22018MR340486
  16. [16] Herb R.A, Elliptic representations for Sp(2n) and SO(n), Pacific J. Math.161 (1993) 347-358. Zbl0797.22007MR1242203
  17. [17] Jantzen C, On the Iwahori–Matsumoto involution and applications, Ann. Sci. École Norm. Sup.28 (1995) 527-547. Zbl0840.22030MR1341660
  18. [18] Jantzen C, On square-integrable representations of classical p-adic groups II, Represent. Theory4 (2000) 127-180. Zbl1045.22018MR1789464
  19. [19] Keys C.D, L-indistinguishability and R-groups for quasi-split groups: unitary groups in even dimension, Ann. Sci. École Norm. Sup.20 (1987) 31-64. Zbl0634.22014MR892141
  20. [20] Keys C.D, Shahidi F, Artin L-functions and normalization of intertwining operators, Ann. Sci. École Norm. Sup.21 (1988) 67-89. Zbl0654.10030MR944102
  21. [21] Knapp A.W, Stein E.M, Irreducibility theorems for principal series, in: Conference on Harmonic Analysis, Lecture Notes in Math., 266, Springer-Verlag, New York, 1972, pp. 197-214. Zbl0248.22017MR422512
  22. [22] Lang S, Algebra, Addison-Wesley, 1993. Zbl0848.13001MR197234
  23. [23] Mœglin C., Tadić M., Construction of discrete series for classical p-adic groups, Preprint. Zbl0992.22015
  24. [24] Silberger A, The Knapp–Stein dimension theorem for p-adic groups, Proc. Amer. Math. Soc.68 (1978) 243-246. Zbl0348.22007MR492091
  25. [25] Silberger A, Introduction to harmonic analysis on reductive p-adic groups, Math. Notes, 23, Princeton University Press, Princeton, NJ, 1979. Zbl0458.22006MR544991
  26. [26] Shahidi F, On certain L-functions, Amer. J. Math.103 (1981) 297-355. Zbl0467.12013MR610479
  27. [27] Shahidi F, A proof of Langlands' conjecture on Plancherel measures; Complementary series for p-adic groups, Ann. of Math.132 (1990) 273-330. Zbl0780.22005MR1070599
  28. [28] Tadić M, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra177 (1995) 1-33. Zbl0874.22014MR1356358
  29. [29] Tadić M, Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup.19 (1986) 335-382. Zbl0614.22005MR870688
  30. [30] Tadić M, On regular square integrable representations of p-adic groups, Amer. J. Math.120 (1998) 159-210. Zbl0903.22008MR1600280
  31. [31] Zelevinsky A.V, Induced representations of reductive p-adic groups, II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup.13 (1980) 165-210. Zbl0441.22014MR584084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.