The Aubert involution and R-groups
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 5, page 673-693
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBan, Dubravka. "The Aubert involution and R-groups." Annales scientifiques de l'École Normale Supérieure 35.5 (2002): 673-693. <http://eudml.org/doc/82586>.
@article{Ban2002,
author = {Ban, Dubravka},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Aubert involution; duality; -adic group; group},
language = {eng},
number = {5},
pages = {673-693},
publisher = {Elsevier},
title = {The Aubert involution and R-groups},
url = {http://eudml.org/doc/82586},
volume = {35},
year = {2002},
}
TY - JOUR
AU - Ban, Dubravka
TI - The Aubert involution and R-groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 5
SP - 673
EP - 693
LA - eng
KW - Aubert involution; duality; -adic group; group
UR - http://eudml.org/doc/82586
ER -
References
top- [1] Arthur J, Unipotent automorphic representations: conjectures, Astérisque171–172 (1989) 13-71. Zbl0728.22014MR1021499
- [2] Arthur J, Intertwining operators and residues 1.weighted characters, J. Func. Anal.84 (1989) 19-84. Zbl0679.22011MR999488
- [3] Arthur J, On elliptic tempered characters, Acta Math.171 (1993) 73-138. Zbl0822.22011MR1237898
- [4] Aubert A.-M, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc.347 (1995) 2179-2189, Trans. Amer. Math. Soc.348 (1996) 4687-4690, Erratum. Zbl0861.22012
- [5] Ban D, Jacquet modules of parabolically induced representations and Weyl groups, Can. J. Math.53 (4) (2001) 675-695. Zbl1002.22010MR1848502
- [6] Ban D, Parabolic induction and Jacquet modules of representations of O(2n,F), Glasnik Mat.34 (54) (1999) 147-185. Zbl0954.22013MR1739616
- [7] Ban D, Self-duality in the case of SO(2n,F), Glasnik Mat.34 (54) (1999) 187-196. Zbl0954.22012MR1739617
- [8] Barbasch D, Moy A, A unitarity criterion for p-adic groups, Invent. Math.98 (1) (1989) 19-37. Zbl0676.22012MR1010153
- [9] Bernstein I.N, Zelevinsky A.V, Induced representations of reductive p-adic groups, I, Ann. Sci. École Norm. Sup.10 (1977) 441-472. Zbl0412.22015MR579172
- [10] Borel A, Linear Algebraic Groups, Springer-Verlag, 1991. Zbl0726.20030MR1102012
- [11] Bourbaki N, Groupes et algèbres de Lie, Ch. 4, Paris, Hermann, 1968. Zbl0483.22001MR240238
- [12] Casselman W., Introduction to the theory of admissible representations of p-adic reductive groups, Preprint.
- [13] Goldberg D, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math.116 (1994) 1101-1151. Zbl0851.22021MR1296726
- [14] Goldberg D., Shahidi F., Automorphic L-functions, intertwining operators and the irreducible tempered representations of p-adic groups, Preprint.
- [15] Harish-Chandra, Harmonic analysis on reductive p-adic groups, Proc. Symp. Pure Math.26 (1974) 167-192. Zbl0289.22018MR340486
- [16] Herb R.A, Elliptic representations for Sp(2n) and SO(n), Pacific J. Math.161 (1993) 347-358. Zbl0797.22007MR1242203
- [17] Jantzen C, On the Iwahori–Matsumoto involution and applications, Ann. Sci. École Norm. Sup.28 (1995) 527-547. Zbl0840.22030MR1341660
- [18] Jantzen C, On square-integrable representations of classical p-adic groups II, Represent. Theory4 (2000) 127-180. Zbl1045.22018MR1789464
- [19] Keys C.D, L-indistinguishability and R-groups for quasi-split groups: unitary groups in even dimension, Ann. Sci. École Norm. Sup.20 (1987) 31-64. Zbl0634.22014MR892141
- [20] Keys C.D, Shahidi F, Artin L-functions and normalization of intertwining operators, Ann. Sci. École Norm. Sup.21 (1988) 67-89. Zbl0654.10030MR944102
- [21] Knapp A.W, Stein E.M, Irreducibility theorems for principal series, in: Conference on Harmonic Analysis, Lecture Notes in Math., 266, Springer-Verlag, New York, 1972, pp. 197-214. Zbl0248.22017MR422512
- [22] Lang S, Algebra, Addison-Wesley, 1993. Zbl0848.13001MR197234
- [23] Mœglin C., Tadić M., Construction of discrete series for classical p-adic groups, Preprint. Zbl0992.22015
- [24] Silberger A, The Knapp–Stein dimension theorem for p-adic groups, Proc. Amer. Math. Soc.68 (1978) 243-246. Zbl0348.22007MR492091
- [25] Silberger A, Introduction to harmonic analysis on reductive p-adic groups, Math. Notes, 23, Princeton University Press, Princeton, NJ, 1979. Zbl0458.22006MR544991
- [26] Shahidi F, On certain L-functions, Amer. J. Math.103 (1981) 297-355. Zbl0467.12013MR610479
- [27] Shahidi F, A proof of Langlands' conjecture on Plancherel measures; Complementary series for p-adic groups, Ann. of Math.132 (1990) 273-330. Zbl0780.22005MR1070599
- [28] Tadić M, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra177 (1995) 1-33. Zbl0874.22014MR1356358
- [29] Tadić M, Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup.19 (1986) 335-382. Zbl0614.22005MR870688
- [30] Tadić M, On regular square integrable representations of p-adic groups, Amer. J. Math.120 (1998) 159-210. Zbl0903.22008MR1600280
- [31] Zelevinsky A.V, Induced representations of reductive p-adic groups, II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup.13 (1980) 165-210. Zbl0441.22014MR584084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.