Version réelle de la conjecture de Ramadanov

Abdelali Attioui

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 3, page 273-285
  • ISSN: 0012-9593

How to cite

top

Attioui, Abdelali. "Version réelle de la conjecture de Ramadanov." Annales scientifiques de l'École Normale Supérieure 29.3 (1996): 273-285. <http://eudml.org/doc/82409>.

@article{Attioui1996,
author = {Attioui, Abdelali},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {real-analytic manifolds; real-analytic hypersurface; Bergman kernel function; logarithmic term; Ramadanov conjecture},
language = {fre},
number = {3},
pages = {273-285},
publisher = {Elsevier},
title = {Version réelle de la conjecture de Ramadanov},
url = {http://eudml.org/doc/82409},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Attioui, Abdelali
TI - Version réelle de la conjecture de Ramadanov
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 3
SP - 273
EP - 285
LA - fre
KW - real-analytic manifolds; real-analytic hypersurface; Bergman kernel function; logarithmic term; Ramadanov conjecture
UR - http://eudml.org/doc/82409
ER -

References

top
  1. [1] A. ATTIOUI, Version réelle de la conjecture de I. P. Ramadanov (C. R. Acad. Sci. Paris, t. 317, Série I, 1993, p. 283-287). Zbl0789.32007MR94i:32031
  2. [2] M. BEALS, C. FEFFERMAN and R. GROSSMAN, Strictly pseudoconvex domains in ℂn (Bull. A.M.S., vol. 8, 1983, p. 125-322). Zbl0546.32008MR85a:32025
  3. [3] D. BOICHU and G. COEURÉ, Sur le noyau de Bergman des domaines de Reinhardt (Invent. Math., vol. 72, 1983, p. 131-152). Zbl0489.32017MR85f:32042a
  4. [4] L. BOUTET DE MONVEL, Complément sur le noyau de Bergman, Séminaire E.D.P. Ecole Polytechnique, 1985-86, exposé n° 20. Zbl0624.32014
  5. [5] L. BOUTET DE MONVEL, Le noyau de Bergman en dimension 2 (suite), Séminaire E.D.P., Ecole Polytechnique, 1987-88, exposé n° 22. Zbl0682.31002
  6. [6] L. BOUTET DE MONVEL, Singularity of the Bergman kernel, Complex Geometry, (Osaka, 1990), 13-29, Lecture Notes in Pure and Appl. Math., 143, Dekker, New York, 1993. Zbl0798.32024
  7. [7] L. BOUTET DE MONVEL and J. SJÖSTRAND, Sur la singularité des noyaux de Bergman et de Szegö (Soc. Math. de France, Astérisque, vol. 34-35, 1976, p. 123-164). Zbl0344.32010
  8. [8] D. BURNS, non publié. 
  9. [9] E. CARTAN, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I (Ann. Math. Pures Appl., (4), vol. 11, 1932, p. 17-90 et II, Ann. Sc. Norm. Sup. Pisa 2,1, 1932, p. 333-354). Zbl58.1256.03JFM58.1256.03
  10. [10] S. S. CHERN and J. MOSER, Real hypersurfaces in complex manifolds (Acta Math., vol. 133, 1974, p. 219-271). Zbl0302.32015MR54 #13112
  11. [11] C. FEFFERMAN, The Bergman kernel and biholomorphic mappings of pseudoconvexdomains (Invent. Math., vol. 26, 1974, p. 1-65). Zbl0289.32012MR50 #2562
  12. [12] C. FEFFERMAN, Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains (Ann. Math., vol. 103, 1976, p. 395-416). Zbl0322.32012MR53 #11097a
  13. [13] C. FEFFERMAN, Parabolic invariant theory in complex analysis (Adv. in Math., vol. 31, 1979, p. 131-262). Zbl0444.32013MR80j:32035
  14. [14] C. FEFFERMAN and R. GRAHAM, Conformal invariants (Astérisque hors série : E. Cartan et les mathématiques d'aujourd'hui, 1985, p. 95-116). Zbl0602.53007
  15. [15] R. GRAHAM, Scalar boundary invariants and the Bergman kernel in “Complex analysis II” (C. A. BERENSTEIN ed.) (Springer Lecture Notes in Math, vol. 1276, 1987, p. 108-135). Zbl0626.32027MR89d:32045
  16. [16] R. GRAHAM, Higher asymptotics of the complex Monge-Ampère equation (Compositio Math., vol. 64, 1987, p. 133-155). Zbl0628.32033MR89e:32022
  17. [17] R. GRAHAM, Invariant Theory of Parabolic Geometries (Lecture Notes in Pure and App. Math., vol. 143, Dekker, 1993, p. 53-66). Zbl0794.53028MR94a:32013
  18. [18] K. HIRACHI, The Second Variation of the Bergman Kernel of Ellipsoids, non publié. Zbl0801.32007
  19. [19] M. KASHIWARA, Analyse microlocale du noyau de Bergman (Séminaire Goulaouic-Schwartz 1976-77, exposé n° 8, Ecole Polytechnique). Zbl0445.32020
  20. [20] N. KERZMAN, The Bergman kernel function. Differentiability at the boundary (Math. Ann., vol. 195, 1972, p. 149-158, Springer-Verlag, 1972). MR45 #3762
  21. [21] M. KURANISHI, Cartan connections and CR structures with non-degenerate Levi-form (Astérisque hors série : E. Cartan et les mathématiques d'aujourd'hui, 1985, p. 273-288). Zbl0596.53031MR87g:32018
  22. [22] J. LEE and R. MELROSE, Boundary behaviour of the complex Monge-Ampère equation (Acta Math., vol. 148, 1982, p. 159-192). Zbl0496.35042MR84e:58078
  23. [23] N. NAKAZAWA, Asymptotic expansion of the Bergman karnel for strictly pseudoconvex complete Reinhardt domains in ℂ2 (Proc. Japan Acad., vol. 66A, 1990, p. 39-41). Zbl0704.32008MR91e:32020
  24. [24] I. P. RAMADANOV, A characterisation of the balls in ℂn by means of the Bergman kernel (C. R. Acad. Bulgare des Sciences, vol. 34, n° 7, 1981). Zbl0484.32012MR83b:32022
  25. [25] S. WEBSTER, On the mapping problem for algebraic real hypersurfaces (Invent. Math., vol. 43, 1977, p. 53-68). Zbl0348.32005MR57 #3431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.