Version réelle de la conjecture de Ramadanov
Annales scientifiques de l'École Normale Supérieure (1996)
- Volume: 29, Issue: 3, page 273-285
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAttioui, Abdelali. "Version réelle de la conjecture de Ramadanov." Annales scientifiques de l'École Normale Supérieure 29.3 (1996): 273-285. <http://eudml.org/doc/82409>.
@article{Attioui1996,
author = {Attioui, Abdelali},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {real-analytic manifolds; real-analytic hypersurface; Bergman kernel function; logarithmic term; Ramadanov conjecture},
language = {fre},
number = {3},
pages = {273-285},
publisher = {Elsevier},
title = {Version réelle de la conjecture de Ramadanov},
url = {http://eudml.org/doc/82409},
volume = {29},
year = {1996},
}
TY - JOUR
AU - Attioui, Abdelali
TI - Version réelle de la conjecture de Ramadanov
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 3
SP - 273
EP - 285
LA - fre
KW - real-analytic manifolds; real-analytic hypersurface; Bergman kernel function; logarithmic term; Ramadanov conjecture
UR - http://eudml.org/doc/82409
ER -
References
top- [1] A. ATTIOUI, Version réelle de la conjecture de I. P. Ramadanov (C. R. Acad. Sci. Paris, t. 317, Série I, 1993, p. 283-287). Zbl0789.32007MR94i:32031
- [2] M. BEALS, C. FEFFERMAN and R. GROSSMAN, Strictly pseudoconvex domains in ℂn (Bull. A.M.S., vol. 8, 1983, p. 125-322). Zbl0546.32008MR85a:32025
- [3] D. BOICHU and G. COEURÉ, Sur le noyau de Bergman des domaines de Reinhardt (Invent. Math., vol. 72, 1983, p. 131-152). Zbl0489.32017MR85f:32042a
- [4] L. BOUTET DE MONVEL, Complément sur le noyau de Bergman, Séminaire E.D.P. Ecole Polytechnique, 1985-86, exposé n° 20. Zbl0624.32014
- [5] L. BOUTET DE MONVEL, Le noyau de Bergman en dimension 2 (suite), Séminaire E.D.P., Ecole Polytechnique, 1987-88, exposé n° 22. Zbl0682.31002
- [6] L. BOUTET DE MONVEL, Singularity of the Bergman kernel, Complex Geometry, (Osaka, 1990), 13-29, Lecture Notes in Pure and Appl. Math., 143, Dekker, New York, 1993. Zbl0798.32024
- [7] L. BOUTET DE MONVEL and J. SJÖSTRAND, Sur la singularité des noyaux de Bergman et de Szegö (Soc. Math. de France, Astérisque, vol. 34-35, 1976, p. 123-164). Zbl0344.32010
- [8] D. BURNS, non publié.
- [9] E. CARTAN, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I (Ann. Math. Pures Appl., (4), vol. 11, 1932, p. 17-90 et II, Ann. Sc. Norm. Sup. Pisa 2,1, 1932, p. 333-354). Zbl58.1256.03JFM58.1256.03
- [10] S. S. CHERN and J. MOSER, Real hypersurfaces in complex manifolds (Acta Math., vol. 133, 1974, p. 219-271). Zbl0302.32015MR54 #13112
- [11] C. FEFFERMAN, The Bergman kernel and biholomorphic mappings of pseudoconvexdomains (Invent. Math., vol. 26, 1974, p. 1-65). Zbl0289.32012MR50 #2562
- [12] C. FEFFERMAN, Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains (Ann. Math., vol. 103, 1976, p. 395-416). Zbl0322.32012MR53 #11097a
- [13] C. FEFFERMAN, Parabolic invariant theory in complex analysis (Adv. in Math., vol. 31, 1979, p. 131-262). Zbl0444.32013MR80j:32035
- [14] C. FEFFERMAN and R. GRAHAM, Conformal invariants (Astérisque hors série : E. Cartan et les mathématiques d'aujourd'hui, 1985, p. 95-116). Zbl0602.53007
- [15] R. GRAHAM, Scalar boundary invariants and the Bergman kernel in “Complex analysis II” (C. A. BERENSTEIN ed.) (Springer Lecture Notes in Math, vol. 1276, 1987, p. 108-135). Zbl0626.32027MR89d:32045
- [16] R. GRAHAM, Higher asymptotics of the complex Monge-Ampère equation (Compositio Math., vol. 64, 1987, p. 133-155). Zbl0628.32033MR89e:32022
- [17] R. GRAHAM, Invariant Theory of Parabolic Geometries (Lecture Notes in Pure and App. Math., vol. 143, Dekker, 1993, p. 53-66). Zbl0794.53028MR94a:32013
- [18] K. HIRACHI, The Second Variation of the Bergman Kernel of Ellipsoids, non publié. Zbl0801.32007
- [19] M. KASHIWARA, Analyse microlocale du noyau de Bergman (Séminaire Goulaouic-Schwartz 1976-77, exposé n° 8, Ecole Polytechnique). Zbl0445.32020
- [20] N. KERZMAN, The Bergman kernel function. Differentiability at the boundary (Math. Ann., vol. 195, 1972, p. 149-158, Springer-Verlag, 1972). MR45 #3762
- [21] M. KURANISHI, Cartan connections and CR structures with non-degenerate Levi-form (Astérisque hors série : E. Cartan et les mathématiques d'aujourd'hui, 1985, p. 273-288). Zbl0596.53031MR87g:32018
- [22] J. LEE and R. MELROSE, Boundary behaviour of the complex Monge-Ampère equation (Acta Math., vol. 148, 1982, p. 159-192). Zbl0496.35042MR84e:58078
- [23] N. NAKAZAWA, Asymptotic expansion of the Bergman karnel for strictly pseudoconvex complete Reinhardt domains in ℂ2 (Proc. Japan Acad., vol. 66A, 1990, p. 39-41). Zbl0704.32008MR91e:32020
- [24] I. P. RAMADANOV, A characterisation of the balls in ℂn by means of the Bergman kernel (C. R. Acad. Bulgare des Sciences, vol. 34, n° 7, 1981). Zbl0484.32012MR83b:32022
- [25] S. WEBSTER, On the mapping problem for algebraic real hypersurfaces (Invent. Math., vol. 43, 1977, p. 53-68). Zbl0348.32005MR57 #3431
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.