On the zeta function of a complete intersection
Alan Adolphson; Steven Sperber
Annales scientifiques de l'École Normale Supérieure (1996)
- Volume: 29, Issue: 3, page 287-328
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAdolphson, Alan, and Sperber, Steven. "On the zeta function of a complete intersection." Annales scientifiques de l'École Normale Supérieure 29.3 (1996): 287-328. <http://eudml.org/doc/82410>.
@article{Adolphson1996,
author = {Adolphson, Alan, Sperber, Steven},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic Dwork cohomology; Katz conjecture; exponential modules; twisted de Rham theory; zeta function of the complete intersection; Weil conjectures; characteristic polynomial; Newton polygon; Hodge polygon; hypersurfaces; middle-dimensional cohomology},
language = {eng},
number = {3},
pages = {287-328},
publisher = {Elsevier},
title = {On the zeta function of a complete intersection},
url = {http://eudml.org/doc/82410},
volume = {29},
year = {1996},
}
TY - JOUR
AU - Adolphson, Alan
AU - Sperber, Steven
TI - On the zeta function of a complete intersection
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 3
SP - 287
EP - 328
LA - eng
KW - -adic Dwork cohomology; Katz conjecture; exponential modules; twisted de Rham theory; zeta function of the complete intersection; Weil conjectures; characteristic polynomial; Newton polygon; Hodge polygon; hypersurfaces; middle-dimensional cohomology
UR - http://eudml.org/doc/82410
ER -
References
top- [1] A. ADOLPHSON and S. SPERBER, Exponential sums and Newton polyhedra : Cohomology and estimates (Ann. of Math., Vol. 130, 1989, pp. 367-406). Zbl0723.14017MR91e:11094
- [2] A. ADOLPHSON and S. SPERBER, Twisted exponential sums and Newton polyhedra (J. reine und angew. Math., Vol. 443, 1993, pp. 151-177). Zbl0853.11067MR95f:14037
- [3] A. ADOLPHSON and S. SPERBER, On the degree of the zeta function of a complete intersection, preprint. Zbl0946.14010
- [4] J. BARSHAY, On the zeta function of biprojective complete intersections (Trans. A.M.S., Vol. 135, 1969, pp. 447-458). Zbl0174.24302MR38 #1095
- [5] V. V. BATYREV, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori (Duke Math. J., Vol. 69, 1993, pp. 349-409). Zbl0812.14035MR94m:14067
- [6] V. I. DANILOV and A. G. KHOVANSKII, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers (Math. USSR Izvestiya, (2), Vol. 29, 1987, pp. 279-298 (English translation)). Zbl0669.14012
- [7] P. DELIGNE, Théorie de Hodge, II (Publ. Math. I.H.E.S., Vol. 40, 1971, pp. 5-57). Zbl0219.14007MR58 #16653a
- [8] P. DELIGNE, Théorie de Hodge, III (Publ. Math. I.H.E.S., Vol. 44, 1974, pp. 5-77). Zbl0237.14003MR58 #16653b
- [9] B. DWORK, On the zeta function of a hypersurface (Publ. Math. I.H.E.S., Vol. 12, 1962, pp. 5-68). Zbl0173.48601MR28 #3039
- [10] B. DWORK, On the zeta function of a hypersurface, II (Ann. of Math., Vol. 80, 1964, pp. 227-299). Zbl0173.48601MR32 #5654
- [11] K. IRELAND, On the zeta function of an algebraic variety (Amer. J. Math., Vol. 89, 1967, pp. 643-660). Zbl0197.47201MR36 #1447
- [12] A. G. KHOVANSKII, Newton polyhedra and toroidal varieties (Func. Anal. Appl., Vol. 11, 1977, pp. 289-296 (English translation)). Zbl0445.14019MR57 #16291
- [13] A. G. KOUCHNIRENKO, Polyèdres de Newton et nombres de Milnor (Invent. Math., Vol. 32, 1976, pp. 1-31). Zbl0328.32007MR54 #7454
- [14] B. MAZUR, Frobenius and the Hodge filtration (Bull. A.M.S., Vol. 78, 1972, pp. 653-667). Zbl0258.14006MR48 #8507
- [15] P. MONSKY, p-Adic Analysis and Zeta Functions, Lectures in Mathematics, Kyoto University, Tokyo, Kinokuniya Bookstore. Zbl0256.14009
- [16] J.-P. SERRE, Endomorphismes complètement continus des espaces de Banach p-adiques (Publ. Math. I.H.E.S., Vol. 12, 1962, pp. 69-85). Zbl0104.33601MR26 #1733
- [17] E. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR35 #1007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.