Singularities of the scattering kernel for trapping obstacles

Vesselin Petkov; Latchezar Stoyanov

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 6, page 737-756
  • ISSN: 0012-9593

How to cite

top

Petkov, Vesselin, and Stoyanov, Latchezar. "Singularities of the scattering kernel for trapping obstacles." Annales scientifiques de l'École Normale Supérieure 29.6 (1996): 737-756. <http://eudml.org/doc/82421>.

@article{Petkov1996,
author = {Petkov, Vesselin, Stoyanov, Latchezar},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {scattering by obstacles; singularities of scattering amplitude; ray trapping obstacles},
language = {eng},
number = {6},
pages = {737-756},
publisher = {Elsevier},
title = {Singularities of the scattering kernel for trapping obstacles},
url = {http://eudml.org/doc/82421},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Petkov, Vesselin
AU - Stoyanov, Latchezar
TI - Singularities of the scattering kernel for trapping obstacles
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 6
SP - 737
EP - 756
LA - eng
KW - scattering by obstacles; singularities of scattering amplitude; ray trapping obstacles
UR - http://eudml.org/doc/82421
ER -

References

top
  1. [BGR] C. BARDOS, J. C. GUILLOT and J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné (Commun. Partial Diff. Equations, Vol. 7, 1982, pp. 905-958). Zbl0496.35067MR84d:35120
  2. [BLR] C. BARDOS, G. LEBEAU and J. RAUCH, Sharp sufficient condition for the observation, control and stabilization of waves from the boundary (SIAM J. Control and Optimization, Vol. 30, 1992, pp. 1024-1065). Zbl0786.93009MR94b:93067
  3. [CPS] F. CARDOSO, V. PETKOV and L. STOYANOV, Singularities of the scattering kernel for generic obstacles (Ann. Inst. H. Poincaré (Physique théorique), Vol. 53, 1990, pp. 445-466). Zbl0729.35099MR92i:35073
  4. [Fa1] L. FARHY, Distribution near real axis of the scattering poles generated by a non-periodic ray (Ann. Inst. H. Poincaré (Physique théorique), Vol. 60, 1994, pp. 291-302). Zbl0808.35091MR95h:35165
  5. [Fa2] L. FARHY, Lower bounds on the number of scattering poles under lines parallel to real axis (Commun. Partial Diff. Equations, Vol. 20, 1995, pp. 729-740). Zbl0822.35105MR96a:35140
  6. [G] C. GÉRARD, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes (Bull. de S.M.F., Mémoire n° 31, Vol. 116, 1988). Zbl0654.35081MR91e:35168
  7. [Gu] V. GUILLEMIN, Sojourn time and asymptotic properties of the scattering matrix (Publ. RIMS Kyoto Univ., Vol. 12, 1977, pp. 69-88). Zbl0381.35064MR56 #6759
  8. [H] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, vol. III. Berlin, Springer 1985. Zbl0601.35001
  9. [I1] M. IKAWA, Precise information on the poles of the scattering matrix for two strictly convex obstacles (J. Math. Kyoto Univ., Vol. 27, 1987, pp. 69-102). Zbl0637.35068MR88e:35143
  10. [I2] M. IKAWA, On the existence of the poles of the scattering matrix for several convex bodies (Proc. Japan Acad., Ser. A, Vol. 64, 1988, pp. 91-93). Zbl0704.35113MR90i:35211
  11. [I3] M. IKAWA, On scattering by obstacles, Proceedings ICM-90, Springer-Verlag, Berlin, 1991, pp. 1145-1154. Zbl0757.35055MR1159299
  12. [LP1] P. LAX and R. PHILLIPS, Scattering Theory, New York, Academic Press, 1967. Zbl0186.16301
  13. [LP2] P. LAX and R. PHILLIPS, Scattering theory for the acoustical equation in an even number of space dimensions (Indiana Univ. Math. J., Vol. 22, 1972, pp. 101-134). Zbl0236.35036MR46 #4014
  14. [Ma] A. MAJDA, A representation formula for the scattering operator and the inverse problem for arbitrary bodies (Comm. Pure Appl. Math., Vol. 30, 1977, pp. 165-194). Zbl0335.35076MR55 #8583
  15. [MS] R. MELROSE and J. SJÖSTRAND, Singularities in boundary value problems, I, II (Comm. Pure Appl. Math., Vol. 31, 1978, pp. 593-617 and Vol. 35, 1982, pp. 129-168). Zbl0368.35020
  16. [P] V. PETKOV, Scattering Theory for Hyperbolic Operators, Amsterdam, North-Holland, 1989. Zbl0687.35067MR91e:35170
  17. [PS1] V. PETKOV and L. STOYANOV, Geometry of Reflecting Rays and Inverse Spectral Problems, Chichester, John Wiley & Sons, 1992. Zbl0761.35077MR93i:58161
  18. [PS2] V. PETKOV and L. STOYANOV, Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian (Ann. Inst. H. Poincaré (Physique théorique), Vol. 62, 1995, pp. 17-45). Zbl0838.35093MR96g:58199
  19. [Ra] J. RALSTON, Solutions of the wave equation with localized energy (Comm. Pure Appl. Math., Vol. 22, 1969, pp. 807-823). Zbl0209.40402MR40 #7642
  20. [So] H. SOGA, Singularities of the scattering kernel for convex obstacles (J. Math. Kyoto Univ., Vol. 22, 1983, pp. 729-765). Zbl0511.35070MR84c:35085
  21. [SjZ] J. SJÖSTRAND and M. ZWORSKI, Lower bounds on the number of scattering poles (Commun. Partial Diff. Equations, Vol. 18, 1993, pp. 847-857). Zbl0784.35070MR94h:35198
  22. [St1] L. STOYANOV, Generalized Hamiltonian flow and Poisson relation for the scattering kernel (Maths. Department, Univ. of Western Australia, Research Report 10, 1994). 
  23. [St2] L. STOYANOV, Poisson relation for the scattering kernel and inverse scattering by obstacles (Séminaire EDP, Exposé V, Ecole Polytechnique, 1994-1995). Zbl0888.58070
  24. [V] B. VAINBERG, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ. Ltd., 1988. Zbl0743.35001
  25. [Vo1] G. VODEV, Sharp bound on the number of scattering poles in even-dimensional spaces (Duke Math. J., Vol. 74, 1994, pp. 1-17). Zbl0813.35075MR95e:35153
  26. [Vo2] G. VODEV, Sharp bounds on the number of scattering poles in the two dimensional case (Math. Nachr., Vol. 170, 1994, pp. 287-297). Zbl0829.35091MR95i:35209

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.