Singularities of the scattering kernel for trapping obstacles
Vesselin Petkov; Latchezar Stoyanov
Annales scientifiques de l'École Normale Supérieure (1996)
- Volume: 29, Issue: 6, page 737-756
- ISSN: 0012-9593
Access Full Article
topHow to cite
topPetkov, Vesselin, and Stoyanov, Latchezar. "Singularities of the scattering kernel for trapping obstacles." Annales scientifiques de l'École Normale Supérieure 29.6 (1996): 737-756. <http://eudml.org/doc/82421>.
@article{Petkov1996,
author = {Petkov, Vesselin, Stoyanov, Latchezar},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {scattering by obstacles; singularities of scattering amplitude; ray trapping obstacles},
language = {eng},
number = {6},
pages = {737-756},
publisher = {Elsevier},
title = {Singularities of the scattering kernel for trapping obstacles},
url = {http://eudml.org/doc/82421},
volume = {29},
year = {1996},
}
TY - JOUR
AU - Petkov, Vesselin
AU - Stoyanov, Latchezar
TI - Singularities of the scattering kernel for trapping obstacles
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 6
SP - 737
EP - 756
LA - eng
KW - scattering by obstacles; singularities of scattering amplitude; ray trapping obstacles
UR - http://eudml.org/doc/82421
ER -
References
top- [BGR] C. BARDOS, J. C. GUILLOT and J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné (Commun. Partial Diff. Equations, Vol. 7, 1982, pp. 905-958). Zbl0496.35067MR84d:35120
- [BLR] C. BARDOS, G. LEBEAU and J. RAUCH, Sharp sufficient condition for the observation, control and stabilization of waves from the boundary (SIAM J. Control and Optimization, Vol. 30, 1992, pp. 1024-1065). Zbl0786.93009MR94b:93067
- [CPS] F. CARDOSO, V. PETKOV and L. STOYANOV, Singularities of the scattering kernel for generic obstacles (Ann. Inst. H. Poincaré (Physique théorique), Vol. 53, 1990, pp. 445-466). Zbl0729.35099MR92i:35073
- [Fa1] L. FARHY, Distribution near real axis of the scattering poles generated by a non-periodic ray (Ann. Inst. H. Poincaré (Physique théorique), Vol. 60, 1994, pp. 291-302). Zbl0808.35091MR95h:35165
- [Fa2] L. FARHY, Lower bounds on the number of scattering poles under lines parallel to real axis (Commun. Partial Diff. Equations, Vol. 20, 1995, pp. 729-740). Zbl0822.35105MR96a:35140
- [G] C. GÉRARD, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes (Bull. de S.M.F., Mémoire n° 31, Vol. 116, 1988). Zbl0654.35081MR91e:35168
- [Gu] V. GUILLEMIN, Sojourn time and asymptotic properties of the scattering matrix (Publ. RIMS Kyoto Univ., Vol. 12, 1977, pp. 69-88). Zbl0381.35064MR56 #6759
- [H] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, vol. III. Berlin, Springer 1985. Zbl0601.35001
- [I1] M. IKAWA, Precise information on the poles of the scattering matrix for two strictly convex obstacles (J. Math. Kyoto Univ., Vol. 27, 1987, pp. 69-102). Zbl0637.35068MR88e:35143
- [I2] M. IKAWA, On the existence of the poles of the scattering matrix for several convex bodies (Proc. Japan Acad., Ser. A, Vol. 64, 1988, pp. 91-93). Zbl0704.35113MR90i:35211
- [I3] M. IKAWA, On scattering by obstacles, Proceedings ICM-90, Springer-Verlag, Berlin, 1991, pp. 1145-1154. Zbl0757.35055MR1159299
- [LP1] P. LAX and R. PHILLIPS, Scattering Theory, New York, Academic Press, 1967. Zbl0186.16301
- [LP2] P. LAX and R. PHILLIPS, Scattering theory for the acoustical equation in an even number of space dimensions (Indiana Univ. Math. J., Vol. 22, 1972, pp. 101-134). Zbl0236.35036MR46 #4014
- [Ma] A. MAJDA, A representation formula for the scattering operator and the inverse problem for arbitrary bodies (Comm. Pure Appl. Math., Vol. 30, 1977, pp. 165-194). Zbl0335.35076MR55 #8583
- [MS] R. MELROSE and J. SJÖSTRAND, Singularities in boundary value problems, I, II (Comm. Pure Appl. Math., Vol. 31, 1978, pp. 593-617 and Vol. 35, 1982, pp. 129-168). Zbl0368.35020
- [P] V. PETKOV, Scattering Theory for Hyperbolic Operators, Amsterdam, North-Holland, 1989. Zbl0687.35067MR91e:35170
- [PS1] V. PETKOV and L. STOYANOV, Geometry of Reflecting Rays and Inverse Spectral Problems, Chichester, John Wiley & Sons, 1992. Zbl0761.35077MR93i:58161
- [PS2] V. PETKOV and L. STOYANOV, Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian (Ann. Inst. H. Poincaré (Physique théorique), Vol. 62, 1995, pp. 17-45). Zbl0838.35093MR96g:58199
- [Ra] J. RALSTON, Solutions of the wave equation with localized energy (Comm. Pure Appl. Math., Vol. 22, 1969, pp. 807-823). Zbl0209.40402MR40 #7642
- [So] H. SOGA, Singularities of the scattering kernel for convex obstacles (J. Math. Kyoto Univ., Vol. 22, 1983, pp. 729-765). Zbl0511.35070MR84c:35085
- [SjZ] J. SJÖSTRAND and M. ZWORSKI, Lower bounds on the number of scattering poles (Commun. Partial Diff. Equations, Vol. 18, 1993, pp. 847-857). Zbl0784.35070MR94h:35198
- [St1] L. STOYANOV, Generalized Hamiltonian flow and Poisson relation for the scattering kernel (Maths. Department, Univ. of Western Australia, Research Report 10, 1994).
- [St2] L. STOYANOV, Poisson relation for the scattering kernel and inverse scattering by obstacles (Séminaire EDP, Exposé V, Ecole Polytechnique, 1994-1995). Zbl0888.58070
- [V] B. VAINBERG, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ. Ltd., 1988. Zbl0743.35001
- [Vo1] G. VODEV, Sharp bound on the number of scattering poles in even-dimensional spaces (Duke Math. J., Vol. 74, 1994, pp. 1-17). Zbl0813.35075MR95e:35153
- [Vo2] G. VODEV, Sharp bounds on the number of scattering poles in the two dimensional case (Math. Nachr., Vol. 170, 1994, pp. 287-297). Zbl0829.35091MR95i:35209
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.