Asymptotic curvature ratio, nonnegative curvature and non-collapsing

Alix Deruelle[1]

  • [1] Institut Fourier, Université de Grenoble I 38402 Saint-Martin d’Hères, France

Séminaire de théorie spectrale et géométrie (2011-2012)

  • Volume: 30, page 47-75
  • ISSN: 1624-5458

Abstract

top
We focus on a geometric invariant associated to any noncompact Riemannian manifold : the asymptotic curvature ratio introduced by Gromov. We study how it interacts with the topology of the underlying manifold with other geometric constraints such as positive asymptotic volume ratio, nonnegative (Ricci) curvature and finiteness of the fundamental group (at infinity).

How to cite

top

Deruelle, Alix. "Rapport asymptotique de courbure, courbure positive et non effondrement." Séminaire de théorie spectrale et géométrie 30 (2011-2012): 47-75. <http://eudml.org/doc/275728>.

@article{Deruelle2011-2012,
abstract = {On s’intéresse ici à un invariant géométrique associé à toute variété riemannienne non compacte : le rapport asymptotique de courbure. On étudie son influence sur la topologie de la variété sous-jacente en présence d’autres contraintes géométrico-topologiques portant sur le volume asymptotique, la positivité de la courbure (de Ricci) et/ou la finitude du groupe fondamental (à l’infini).},
affiliation = {Institut Fourier, Université de Grenoble I 38402 Saint-Martin d’Hères, France},
author = {Deruelle, Alix},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Riemannian geometry; nonnegative curvature; asymptotic cone; collapsing at infinity; topology of noncompact Riemannian manifolds},
language = {fre},
pages = {47-75},
publisher = {Institut Fourier},
title = {Rapport asymptotique de courbure, courbure positive et non effondrement},
url = {http://eudml.org/doc/275728},
volume = {30},
year = {2011-2012},
}

TY - JOUR
AU - Deruelle, Alix
TI - Rapport asymptotique de courbure, courbure positive et non effondrement
JO - Séminaire de théorie spectrale et géométrie
PY - 2011-2012
PB - Institut Fourier
VL - 30
SP - 47
EP - 75
AB - On s’intéresse ici à un invariant géométrique associé à toute variété riemannienne non compacte : le rapport asymptotique de courbure. On étudie son influence sur la topologie de la variété sous-jacente en présence d’autres contraintes géométrico-topologiques portant sur le volume asymptotique, la positivité de la courbure (de Ricci) et/ou la finitude du groupe fondamental (à l’infini).
LA - fre
KW - Riemannian geometry; nonnegative curvature; asymptotic cone; collapsing at infinity; topology of noncompact Riemannian manifolds
UR - http://eudml.org/doc/275728
ER -

References

top
  1. Michael T. Anderson, Short geodesics and gravitational instantons, J. Differential Geom. 31 (1990), 265-275 Zbl0696.53029MR1030673
  2. Shigetoshi Bando, Atsushi Kasue, Hiraku Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313-349 Zbl0682.53045MR1001844
  3. I. Belegradek, G. Wei, Metrics of positive Ricci curvature on vector bundles over nilmanifolds, Geom. Funct. Anal. 12 (2002), 56-72 Zbl1029.53045MR1904556
  4. Lionel Bérard-Bergery, Sur de nouvelles variétés riemanniennes d’Einstein, Institut Élie Cartan, 6 6 (1982), 1-60, Univ. Nancy, Nancy Zbl0544.53038
  5. Simon Brendle, Richard Schoen, Sphere theorems in geometry, Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry : forty years of the Journal of Differential Geometry 13 (2009), 49-84, Int. Press, Somerville, MA Zbl1184.53037MR2537082
  6. Dmitri Burago, Yuri Burago, Sergei Ivanov, A course in metric geometry, 33 (2001), American Mathematical Society, Providence, RI Zbl1232.53037MR1835418
  7. Yu. Burago, M. Gromov, G. Perel’man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), 3-51, 222 Zbl0802.53018MR1185284
  8. Huai-Dong Cao, Limits of solutions to the Kähler-Ricci flow, J. Differential Geom. 45 (1997), 257-272 Zbl0889.58067MR1449972
  9. G. Carron, Some old and new results about rigidity of critical metric, ArXiv e-prints (2010) Zbl1315.53024
  10. Jeff Cheeger, Tobias H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), 189-237 Zbl0865.53037MR1405949
  11. Jeff Cheeger, Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), 406-480 Zbl0902.53034MR1484888
  12. Jeff Cheeger, Kenji Fukaya, Mikhael Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), 327-372 Zbl0758.53022MR1126118
  13. Jeff Cheeger, Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119-128 Zbl0223.53033MR303460
  14. Jeff Cheeger, Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443 Zbl0246.53049MR309010
  15. Jeff Cheeger, Gang Tian, Curvature and injectivity radius estimates for Einstein 4-manifolds, J. Amer. Math. Soc. 19 (2006), 487-525 (electronic) Zbl1092.53034MR2188134
  16. C.-W. Chen, A. Deruelle, Structure at infinity of expanding gradient Ricci soliton, ArXiv e-prints (2011) Zbl1335.53083
  17. Bennett Chow, Peng Lu, Lei Ni, Hamilton’s Ricci flow, 77 (2006), American Mathematical Society, Providence, RI Zbl1118.53001MR2274812
  18. Alix Deruelle, Géométrie à l’infini de certaines variétés riemanniennes non compactes, (2012) 
  19. Günter Drees, Asymptotically flat manifolds of nonnegative curvature, Differential Geom. Appl. 4 (1994), 77-90 Zbl0796.53041MR1264910
  20. J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987), 295-323 Zbl0642.53044MR909847
  21. J.-H. Eschenburg, V. Schroeder, M. Strake, Curvature at infinity of open nonnegatively curved manifolds, J. Differential Geom. 30 (1989), 155-166 Zbl0678.53031MR1001273
  22. Kenji Fukaya, A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom. 28 (1988), 1-21 Zbl0652.53031MR950552
  23. R. E. Greene, K. Shiohama, Convex functions on complete noncompact manifolds : topological structure, Invent. Math. 63 (1981), 129-157 Zbl0468.53033MR608531
  24. R. E. Greene, H. Wu, Lipschitz convergence of Riemannian manifolds, Pacific J. Math. 131 (1988), 119-141 Zbl0646.53038MR917868
  25. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, (2007), Birkhäuser Boston Inc., Boston, MA Zbl1113.53001MR2307192
  26. Luis Guijarro, Vitali Kapovitch, Restrictions on the geometry at infinity of nonnegatively curved manifolds, Duke Math. J. 78 (1995), 257-276 Zbl0838.53036MR1333500
  27. Luis Guijarro, Peter Petersen, Rigidity in non-negative curvature, Ann. Sci. École Norm. Sup. (4) 30 (1997), 595-603 Zbl1008.53042MR1474806
  28. T. Holck Colding, A. Naber, Characterization of Tangent Cones of Noncollapsed Limits with Lower Ricci Bounds and Applications, ArXiv e-prints (2011) Zbl1271.53042MR3037899
  29. Atsushi Kasue, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. École Norm. Sup. (4) 21 (1988), 593-622 Zbl0662.53032MR982335
  30. John Lott, Manifolds with quadratic curvature decay and fast volume growth, Math. Ann. 325 (2003), 525-541 Zbl1034.53033MR1968605
  31. John Lott, Zhongmin Shen, Manifolds with quadratic curvature decay and slow volume growth, Ann. Sci. École Norm. Sup. (4) 33 (2000), 275-290 Zbl0996.53026MR1755117
  32. Vincent Minerbe, On the asymptotic geometry of gravitational instantons, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 883-924 Zbl1215.53043MR2778451
  33. G. Perelman, A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone, Comparison geometry (Berkeley, CA, 1993–94) 30 (1997), 165-166, Cambridge Univ. Press, Cambridge Zbl0887.53038MR1452873
  34. Peter Petersen, Riemannian geometry, 171 (2006), Springer, New York Zbl1220.53002MR2243772
  35. Anton Petrunin, Wilderich Tuschmann, Asymptotical flatness and cone structure at infinity, Math. Ann. 321 (2001), 775-788 Zbl1004.53026MR1872529
  36. Xiaochun Rong, On the fundamental groups of manifolds of positive sectional curvature, Ann. of Math. (2) 143 (1996), 397-411 Zbl0974.53029MR1381991
  37. V. A. Šarafutdinov, The Pogorelov-Klingenberg theorem for manifolds that are homeomorphic to R n , Sibirsk. Mat. Ž. 18 (1977), 915-925, 958 Zbl0374.53018MR487896
  38. Jiping Sha, Zhongmin Shen, Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math. 119 (1997), 1399-1404 Zbl0901.53023MR1481819
  39. Zhongmin Shen, Christina Sormani, The topology of open manifolds with nonnegative Ricci curvature, Commun. Math. Anal. (2008), 20-34 Zbl1167.53309MR2452400
  40. Wan-Xiong Shi, Complete noncompact three-manifolds with nonnegative Ricci curvature, J. Differential Geom. 29 (1989), 353-360 Zbl0668.53026MR982179
  41. Christina Sormani, The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal volume growth, Comm. Anal. Geom. 8 (2000), 159-212 Zbl0970.53024MR1730892
  42. Stefan Unnebrink, Asymptotically flat 4 -manifolds, Differential Geom. Appl. 6 (1996), 271-274 Zbl0856.53031MR1408311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.