Precise counting results for closed orbits of Anosov flows

Nalini Anantharaman

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 1, page 33-56
  • ISSN: 0012-9593

How to cite

top

Anantharaman, Nalini. "Precise counting results for closed orbits of Anosov flows." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 33-56. <http://eudml.org/doc/82509>.

@article{Anantharaman2000,
author = {Anantharaman, Nalini},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {closed orbits of Anosov flows; negatively curved surface; homological constraint; number of closed geodesics; asymptotic expansion; transfer operators},
language = {eng},
number = {1},
pages = {33-56},
publisher = {Elsevier},
title = {Precise counting results for closed orbits of Anosov flows},
url = {http://eudml.org/doc/82509},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Anantharaman, Nalini
TI - Precise counting results for closed orbits of Anosov flows
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 33
EP - 56
LA - eng
KW - closed orbits of Anosov flows; negatively curved surface; homological constraint; number of closed geodesics; asymptotic expansion; transfer operators
UR - http://eudml.org/doc/82509
ER -

References

top
  1. [1] T. ADACHI and T. SUNADA, Homology of closed geodesics in a negatively curved manifold, J. Differential Geom. 26 (1987) 81-99. Zbl0618.58028MR88g:58149
  2. [2] D.V. ANOSOV, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Stekl. Inst. of Math. 90 (1969). Zbl0176.19101MR39 #3527
  3. [3] V. BANGERT, Minimal geodesics, Ergodic Theory Dynamical Systems 10 (1989) 263-286. Zbl0676.53055MR91j:58126
  4. [4] M. BABILLOT and F. LEDRAPPIER, Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynamical Systems 18 (1998) 17-39. Zbl0915.58074MR99a:58128
  5. [5] R. BOWEN, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429-460. Zbl0282.58009MR49 #4041
  6. [6] N. CHERNOV, Markov approximations and decay of correlations for Anosov flows, Ann. of Math. (to appear). Zbl0911.58028
  7. [7] E.T. COPSON, Asymptotic Expansions, Cambridge University Press, 1965. Zbl0123.26001MR29 #6234
  8. [8] D. DOLGOPYAT, On decay of correlations in Anosov flows, Ann. of Math. (to appear). Zbl0911.58029
  9. [9] B. HASSELBLATT, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynamical Systems 14 (1994) 645-666. Zbl0821.58032MR95j:58130
  10. [10] H. HUBER, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen (I), Math. Ann. 138 (1959) 1-26 ; (II), Math. Ann. 142 (1961) 385-398 ; (III), Math. Ann. 143 (1961) 463-464. Zbl0101.05702MR27 #4923
  11. [11] L. HORMANDER, The Analysis of Partial Differential Operators, A series of comprehensive studies in mathematics, Vol. 256, Springer, Berlin, 1983. Zbl0521.35001MR85g:35002a
  12. [12] A. KATSUDA and T. SUNADA, Homology and closed geodesics in a compact Riemann surface, Amer. J. Math. 110 (1988) 145-156. Zbl0647.53036MR89e:58093
  13. [13] A. KATSUDA and T. SUNADA, Closed orbits in homology classes, Publ. Math. IHES 71 (1990) 5-32. Zbl0728.58026MR92m:58102
  14. [14] Y. KIFER, Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994) 33-46. Zbl0797.58068MR95b:58091
  15. [15] S. LALLEY, Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math. 8 (1987) 154-193. Zbl0637.58013MR89e:58088
  16. [16] S. LALLEY, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989) 795-821. Zbl0732.53035MR91a:58143
  17. [17] B. MARCUS, Unique ergodicity of some flows related to Axiom A diffeomorphisms, Israel J. Math. 21 (1975) 111-132. Zbl0314.58012MR54 #1302
  18. [18] G. MARGULIS, Applications of ergodic theory for the investigation of manifolds of negative curvature, Funct. Anal. Appl. 3 (1969) 335-336. Zbl0207.20305MR41 #2582
  19. [19] W. PARRY and M. POLLICOTT, Zeta functions and the periodic orbit structure of hyperbolics dynamics, Astrisque 187-188 (1990). Zbl0726.58003MR92f:58141
  20. [20] R. PHILLIPS and P. SARNAK, Geodesics in homology classes, Duke Math. J. 55 (1987), 287-297. Zbl0642.53050MR88g:58151
  21. [21] M. POLLICOTT, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991) 379-385. Zbl0728.53031MR92e:58158
  22. [22] M. POLLICOTT and R. SHARP, Error terms for growth functions on negatively curved surfaces, Amer. J. Math. (to appear). Zbl0999.37010
  23. [23] M. POLLICOTT and R. SHARP, Asymptotic expansions for closed orbits in homology classes, Preprint. Zbl1049.37021
  24. [24] M. RATNER, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math. 15 (1973) 92-114. Zbl0269.58010MR49 #4042
  25. [25] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970. Zbl0193.18401MR43 #445
  26. [26] D. RUELLE, An extension of the theory of Fredholm determinants, Publ. Math. IHES 72 (1990) 175-193. Zbl0732.47003MR92b:58187
  27. [27] S. SCHWARTZMANN, Asymptotic cycles, Ann. of Math. 66 (1957) 270-284. Zbl0207.22603MR19,568i
  28. [28] R. SHARP, Prime orbits theorems with multi-dimensional constraints for Axiom A flows, Mh. Math. 114 (1992) 261-304. Zbl0765.58025MR94i:58163
  29. [29] R. SHARP, Closed orbits in homology classes for Anosov flows, Ergodic Theory Dynamical Systems 13 (1993) 387-408. Zbl0783.58059MR94g:58169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.