Precise counting results for closed orbits of Anosov flows
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 1, page 33-56
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAnantharaman, Nalini. "Precise counting results for closed orbits of Anosov flows." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 33-56. <http://eudml.org/doc/82509>.
@article{Anantharaman2000,
author = {Anantharaman, Nalini},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {closed orbits of Anosov flows; negatively curved surface; homological constraint; number of closed geodesics; asymptotic expansion; transfer operators},
language = {eng},
number = {1},
pages = {33-56},
publisher = {Elsevier},
title = {Precise counting results for closed orbits of Anosov flows},
url = {http://eudml.org/doc/82509},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Anantharaman, Nalini
TI - Precise counting results for closed orbits of Anosov flows
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 33
EP - 56
LA - eng
KW - closed orbits of Anosov flows; negatively curved surface; homological constraint; number of closed geodesics; asymptotic expansion; transfer operators
UR - http://eudml.org/doc/82509
ER -
References
top- [1] T. ADACHI and T. SUNADA, Homology of closed geodesics in a negatively curved manifold, J. Differential Geom. 26 (1987) 81-99. Zbl0618.58028MR88g:58149
- [2] D.V. ANOSOV, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Stekl. Inst. of Math. 90 (1969). Zbl0176.19101MR39 #3527
- [3] V. BANGERT, Minimal geodesics, Ergodic Theory Dynamical Systems 10 (1989) 263-286. Zbl0676.53055MR91j:58126
- [4] M. BABILLOT and F. LEDRAPPIER, Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynamical Systems 18 (1998) 17-39. Zbl0915.58074MR99a:58128
- [5] R. BOWEN, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429-460. Zbl0282.58009MR49 #4041
- [6] N. CHERNOV, Markov approximations and decay of correlations for Anosov flows, Ann. of Math. (to appear). Zbl0911.58028
- [7] E.T. COPSON, Asymptotic Expansions, Cambridge University Press, 1965. Zbl0123.26001MR29 #6234
- [8] D. DOLGOPYAT, On decay of correlations in Anosov flows, Ann. of Math. (to appear). Zbl0911.58029
- [9] B. HASSELBLATT, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynamical Systems 14 (1994) 645-666. Zbl0821.58032MR95j:58130
- [10] H. HUBER, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen (I), Math. Ann. 138 (1959) 1-26 ; (II), Math. Ann. 142 (1961) 385-398 ; (III), Math. Ann. 143 (1961) 463-464. Zbl0101.05702MR27 #4923
- [11] L. HORMANDER, The Analysis of Partial Differential Operators, A series of comprehensive studies in mathematics, Vol. 256, Springer, Berlin, 1983. Zbl0521.35001MR85g:35002a
- [12] A. KATSUDA and T. SUNADA, Homology and closed geodesics in a compact Riemann surface, Amer. J. Math. 110 (1988) 145-156. Zbl0647.53036MR89e:58093
- [13] A. KATSUDA and T. SUNADA, Closed orbits in homology classes, Publ. Math. IHES 71 (1990) 5-32. Zbl0728.58026MR92m:58102
- [14] Y. KIFER, Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994) 33-46. Zbl0797.58068MR95b:58091
- [15] S. LALLEY, Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math. 8 (1987) 154-193. Zbl0637.58013MR89e:58088
- [16] S. LALLEY, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989) 795-821. Zbl0732.53035MR91a:58143
- [17] B. MARCUS, Unique ergodicity of some flows related to Axiom A diffeomorphisms, Israel J. Math. 21 (1975) 111-132. Zbl0314.58012MR54 #1302
- [18] G. MARGULIS, Applications of ergodic theory for the investigation of manifolds of negative curvature, Funct. Anal. Appl. 3 (1969) 335-336. Zbl0207.20305MR41 #2582
- [19] W. PARRY and M. POLLICOTT, Zeta functions and the periodic orbit structure of hyperbolics dynamics, Astrisque 187-188 (1990). Zbl0726.58003MR92f:58141
- [20] R. PHILLIPS and P. SARNAK, Geodesics in homology classes, Duke Math. J. 55 (1987), 287-297. Zbl0642.53050MR88g:58151
- [21] M. POLLICOTT, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991) 379-385. Zbl0728.53031MR92e:58158
- [22] M. POLLICOTT and R. SHARP, Error terms for growth functions on negatively curved surfaces, Amer. J. Math. (to appear). Zbl0999.37010
- [23] M. POLLICOTT and R. SHARP, Asymptotic expansions for closed orbits in homology classes, Preprint. Zbl1049.37021
- [24] M. RATNER, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math. 15 (1973) 92-114. Zbl0269.58010MR49 #4042
- [25] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970. Zbl0193.18401MR43 #445
- [26] D. RUELLE, An extension of the theory of Fredholm determinants, Publ. Math. IHES 72 (1990) 175-193. Zbl0732.47003MR92b:58187
- [27] S. SCHWARTZMANN, Asymptotic cycles, Ann. of Math. 66 (1957) 270-284. Zbl0207.22603MR19,568i
- [28] R. SHARP, Prime orbits theorems with multi-dimensional constraints for Axiom A flows, Mh. Math. 114 (1992) 261-304. Zbl0765.58025MR94i:58163
- [29] R. SHARP, Closed orbits in homology classes for Anosov flows, Ergodic Theory Dynamical Systems 13 (1993) 387-408. Zbl0783.58059MR94g:58169
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.