Expanding maps on Cantor sets and analytic continuation of zeta functions
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 1, page 116-153
- ISSN: 0012-9593
Access Full Article
topHow to cite
topNaud, Frédéric. "Expanding maps on Cantor sets and analytic continuation of zeta functions." Annales scientifiques de l'École Normale Supérieure 38.1 (2005): 116-153. <http://eudml.org/doc/82652>.
@article{Naud2005,
author = {Naud, Frédéric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symbolic dynamics; transfer operator; zeta function; Cantor sets; geodesic flow; Schottky groups; Julia sets; periodic points},
language = {eng},
number = {1},
pages = {116-153},
publisher = {Elsevier},
title = {Expanding maps on Cantor sets and analytic continuation of zeta functions},
url = {http://eudml.org/doc/82652},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Naud, Frédéric
TI - Expanding maps on Cantor sets and analytic continuation of zeta functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 1
SP - 116
EP - 153
LA - eng
KW - symbolic dynamics; transfer operator; zeta function; Cantor sets; geodesic flow; Schottky groups; Julia sets; periodic points
UR - http://eudml.org/doc/82652
ER -
References
top- [1] Anantharaman N., Géodésiques fermées d'une surface sous contraintes homologiques, Thèse de doctorat, Université Paris 6, 2000.
- [2] Anantharaman N., Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. (4)33 (1) (2000) 33-56. Zbl0992.37026MR1743718
- [3] Anosov D.V., Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov.90 (1967) 209. Zbl0176.19101MR224110
- [4] Baladi V., Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific, Singapore, 2000. Zbl1012.37015MR1793194
- [5] Baladi V., Vallée B., Euclidian algorithms are Gaussian, J. Number Theory (2004), submitted for publication. Zbl1114.11092
- [6] Beardon A.F., The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995, Corrected reprint of the 1983 original. Zbl0528.30001MR1393195
- [7] Bowen R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 1975. Zbl0308.28010MR442989
- [8] Bowen R., Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math.50 (1979) 11-25. Zbl0439.30032MR556580
- [9] Bowen R., Series C., Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math.50 (1979) 153-170. Zbl0439.30033MR556585
- [10] Button J., All Fuchsian Schottky groups are classical Schottky groups, in: The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 117-125, (electronic). Zbl0909.20031MR1668339
- [11] Dolgopyat D., On decay of correlations in Anosov flows, Ann. of Math. (2)147 (2) (1998) 357-390. Zbl0911.58029MR1626749
- [12] Dolgopyat D., Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems18 (5) (1998) 1097-1114. Zbl0918.58058MR1653299
- [13] Dolgopyat D., Prevalence of rapid mixing. II. Topological prevalence, Ergodic Theory Dynam. Systems20 (4) (2000) 1045-1059. Zbl0965.37032MR1779392
- [14] Guillopé L., Zworski M., The wave trace for Riemann surfaces, Geom. Funct. Anal.9 (6) (1999) 1156-1168. Zbl0947.58022MR1736931
- [15] Guillopé L., Sur la distribution des longueurs des géodésiques fermées d'une surface compacte à bord totalement géodésique, Duke Math. J.53 (3) (1986) 827-848. Zbl0611.53042MR860674
- [16] Guillopé L., Lin K.K., Zworski M., The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys.245 (1) (2004) 149-176. Zbl1075.11059MR2036371
- [17] Hejhal D.A., The Selberg Trace Formula for PSL(2,R), vol. I, Lecture Notes in Mathematics, vol. 548, Springer-Verlag, Berlin, 1976. Zbl0347.10018MR439755
- [18] Huber H., Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann.142 (1960/1961) 385-398. Zbl0094.05703MR126549
- [19] Iwaniec H., Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002. Zbl1006.11024MR1942691
- [20] Jenkinson O., Pollicott M., Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets, Amer. J. Math.124 (3) (2002) 495-545. Zbl1002.37023MR1902887
- [21] Lalley S.P., Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math.163 (1–2) (1989) 1-55. Zbl0701.58021MR1007619
- [22] Liverani C., Decay of correlations, Ann. of Math. (2)142 (2) (1995) 239-301. Zbl0871.58059MR1343323
- [23] Mazzeo R.R., Melrose R.B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal.75 (2) (1987) 260-310. Zbl0636.58034MR916753
- [24] McMullen C.T., Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math.120 (4) (1998) 691-721. Zbl0953.30026MR1637951
- [25] Morita T., Markov systems and transfer operators associated with cofinite Fuchsian groups, Ergodic Theory Dynam. Systems17 (5) (1997) 1147-1181. Zbl0893.60052MR1477037
- [26] Naud F., Precise asymptotics of the length spectrum for finite geometry Riemann surfaces, IMRN (2004), submitted for publication. Zbl1073.37021MR2130798
- [27] Nicholls P.J., The Ergodic Theory of Discrete Groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. Zbl0674.58001MR1041575
- [28] Parry W., Pollicott M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187–188 (1990) 268. Zbl0726.58003MR1085356
- [29] Patterson S.J., Perry P.A., The divisor of Selberg's zeta function for Kleinian groups, Duke Math. J.106 (2) (2001) 321-390, Appendix A by Charles Epstein. Zbl1012.11083MR1813434
- [30] Pollicott M., Error terms in “prime orbit theorems” for locally constant suspended flows, Quart. J. Math. Oxford Ser. (2)41 (163) (1990) 313-323. Zbl0705.58042
- [31] Pollicott M., Some applications of thermodynamic formalism to manifolds with constant negative curvature, Adv. Math.85 (2) (1991) 161-192. Zbl0726.58047MR1093004
- [32] Pollicott M., Rocha A.C., A remarkable formula for the determinant of the Laplacian, Invent. Math.130 (2) (1997) 399-414. Zbl0896.58067MR1474163
- [33] Pollicott M., Sharp R., Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math.120 (5) (1998) 1019-1042. Zbl0999.37010MR1646052
- [34] Pollicott M., Sharp R., Error terms for closed orbits of hyperbolic flows, Ergodic Theory Dynam. Systems21 (2) (2001) 545-562. Zbl0988.37024MR1827118
- [35] Randol B., On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc.233 (1977) 241-247. Zbl0329.30009MR482582
- [36] Ratcliffe J.G., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. Zbl0809.51001MR1299730
- [37] Ruelle D., Flots qui ne mélangent pas exponentiellement, C. R. Acad. Sci. Paris Sér. I Math.296 (4) (1983) 191-193. Zbl0531.58040MR692974
- [38] Ruelle D., An extension of the theory of Fredholm determinants, Inst. Hautes Études Sci. Publ. Math.72 (1991) 175-193, 1990. Zbl0732.47003MR1087395
- [39] Sarnak P., Prime geodesic theorems, PhD thesis, Stanford University, 1980.
- [40] Selberg A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.)20 (1956) 47-87. Zbl0072.08201MR88511
- [41] Stoyanov L., Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math.123 (4) (2001) 715-759. Zbl0994.37018MR1844576
- [42] Strain J., Zworski M., Growth of the zeta functions for a quadratic map and the dimension of the julia set, Nonlinearity17 (5) (2004) 1607-1622. Zbl1066.37031MR2086141
- [43] Sullivan D., The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math.50 (1979) 171-202. Zbl0439.30034MR556586
- [44] Sullivan D., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math.153 (3–4) (1984) 259-277. Zbl0566.58022MR766265
- [45] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. Zbl0475.28009MR648108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.