Expanding maps on Cantor sets and analytic continuation of zeta functions

Frédéric Naud

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 1, page 116-153
  • ISSN: 0012-9593

How to cite

top

Naud, Frédéric. "Expanding maps on Cantor sets and analytic continuation of zeta functions." Annales scientifiques de l'École Normale Supérieure 38.1 (2005): 116-153. <http://eudml.org/doc/82652>.

@article{Naud2005,
author = {Naud, Frédéric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symbolic dynamics; transfer operator; zeta function; Cantor sets; geodesic flow; Schottky groups; Julia sets; periodic points},
language = {eng},
number = {1},
pages = {116-153},
publisher = {Elsevier},
title = {Expanding maps on Cantor sets and analytic continuation of zeta functions},
url = {http://eudml.org/doc/82652},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Naud, Frédéric
TI - Expanding maps on Cantor sets and analytic continuation of zeta functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 1
SP - 116
EP - 153
LA - eng
KW - symbolic dynamics; transfer operator; zeta function; Cantor sets; geodesic flow; Schottky groups; Julia sets; periodic points
UR - http://eudml.org/doc/82652
ER -

References

top
  1. [1] Anantharaman N., Géodésiques fermées d'une surface sous contraintes homologiques, Thèse de doctorat, Université Paris 6, 2000. 
  2. [2] Anantharaman N., Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. (4)33 (1) (2000) 33-56. Zbl0992.37026MR1743718
  3. [3] Anosov D.V., Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov.90 (1967) 209. Zbl0176.19101MR224110
  4. [4] Baladi V., Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific, Singapore, 2000. Zbl1012.37015MR1793194
  5. [5] Baladi V., Vallée B., Euclidian algorithms are Gaussian, J. Number Theory (2004), submitted for publication. Zbl1114.11092
  6. [6] Beardon A.F., The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995, Corrected reprint of the 1983 original. Zbl0528.30001MR1393195
  7. [7] Bowen R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 1975. Zbl0308.28010MR442989
  8. [8] Bowen R., Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math.50 (1979) 11-25. Zbl0439.30032MR556580
  9. [9] Bowen R., Series C., Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math.50 (1979) 153-170. Zbl0439.30033MR556585
  10. [10] Button J., All Fuchsian Schottky groups are classical Schottky groups, in: The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 117-125, (electronic). Zbl0909.20031MR1668339
  11. [11] Dolgopyat D., On decay of correlations in Anosov flows, Ann. of Math. (2)147 (2) (1998) 357-390. Zbl0911.58029MR1626749
  12. [12] Dolgopyat D., Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems18 (5) (1998) 1097-1114. Zbl0918.58058MR1653299
  13. [13] Dolgopyat D., Prevalence of rapid mixing. II. Topological prevalence, Ergodic Theory Dynam. Systems20 (4) (2000) 1045-1059. Zbl0965.37032MR1779392
  14. [14] Guillopé L., Zworski M., The wave trace for Riemann surfaces, Geom. Funct. Anal.9 (6) (1999) 1156-1168. Zbl0947.58022MR1736931
  15. [15] Guillopé L., Sur la distribution des longueurs des géodésiques fermées d'une surface compacte à bord totalement géodésique, Duke Math. J.53 (3) (1986) 827-848. Zbl0611.53042MR860674
  16. [16] Guillopé L., Lin K.K., Zworski M., The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys.245 (1) (2004) 149-176. Zbl1075.11059MR2036371
  17. [17] Hejhal D.A., The Selberg Trace Formula for PSL(2,R), vol. I, Lecture Notes in Mathematics, vol. 548, Springer-Verlag, Berlin, 1976. Zbl0347.10018MR439755
  18. [18] Huber H., Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann.142 (1960/1961) 385-398. Zbl0094.05703MR126549
  19. [19] Iwaniec H., Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002. Zbl1006.11024MR1942691
  20. [20] Jenkinson O., Pollicott M., Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets, Amer. J. Math.124 (3) (2002) 495-545. Zbl1002.37023MR1902887
  21. [21] Lalley S.P., Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math.163 (1–2) (1989) 1-55. Zbl0701.58021MR1007619
  22. [22] Liverani C., Decay of correlations, Ann. of Math. (2)142 (2) (1995) 239-301. Zbl0871.58059MR1343323
  23. [23] Mazzeo R.R., Melrose R.B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal.75 (2) (1987) 260-310. Zbl0636.58034MR916753
  24. [24] McMullen C.T., Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math.120 (4) (1998) 691-721. Zbl0953.30026MR1637951
  25. [25] Morita T., Markov systems and transfer operators associated with cofinite Fuchsian groups, Ergodic Theory Dynam. Systems17 (5) (1997) 1147-1181. Zbl0893.60052MR1477037
  26. [26] Naud F., Precise asymptotics of the length spectrum for finite geometry Riemann surfaces, IMRN (2004), submitted for publication. Zbl1073.37021MR2130798
  27. [27] Nicholls P.J., The Ergodic Theory of Discrete Groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. Zbl0674.58001MR1041575
  28. [28] Parry W., Pollicott M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187–188 (1990) 268. Zbl0726.58003MR1085356
  29. [29] Patterson S.J., Perry P.A., The divisor of Selberg's zeta function for Kleinian groups, Duke Math. J.106 (2) (2001) 321-390, Appendix A by Charles Epstein. Zbl1012.11083MR1813434
  30. [30] Pollicott M., Error terms in “prime orbit theorems” for locally constant suspended flows, Quart. J. Math. Oxford Ser. (2)41 (163) (1990) 313-323. Zbl0705.58042
  31. [31] Pollicott M., Some applications of thermodynamic formalism to manifolds with constant negative curvature, Adv. Math.85 (2) (1991) 161-192. Zbl0726.58047MR1093004
  32. [32] Pollicott M., Rocha A.C., A remarkable formula for the determinant of the Laplacian, Invent. Math.130 (2) (1997) 399-414. Zbl0896.58067MR1474163
  33. [33] Pollicott M., Sharp R., Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math.120 (5) (1998) 1019-1042. Zbl0999.37010MR1646052
  34. [34] Pollicott M., Sharp R., Error terms for closed orbits of hyperbolic flows, Ergodic Theory Dynam. Systems21 (2) (2001) 545-562. Zbl0988.37024MR1827118
  35. [35] Randol B., On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc.233 (1977) 241-247. Zbl0329.30009MR482582
  36. [36] Ratcliffe J.G., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. Zbl0809.51001MR1299730
  37. [37] Ruelle D., Flots qui ne mélangent pas exponentiellement, C. R. Acad. Sci. Paris Sér. I Math.296 (4) (1983) 191-193. Zbl0531.58040MR692974
  38. [38] Ruelle D., An extension of the theory of Fredholm determinants, Inst. Hautes Études Sci. Publ. Math.72 (1991) 175-193, 1990. Zbl0732.47003MR1087395
  39. [39] Sarnak P., Prime geodesic theorems, PhD thesis, Stanford University, 1980. 
  40. [40] Selberg A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.)20 (1956) 47-87. Zbl0072.08201MR88511
  41. [41] Stoyanov L., Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math.123 (4) (2001) 715-759. Zbl0994.37018MR1844576
  42. [42] Strain J., Zworski M., Growth of the zeta functions for a quadratic map and the dimension of the julia set, Nonlinearity17 (5) (2004) 1607-1622. Zbl1066.37031MR2086141
  43. [43] Sullivan D., The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math.50 (1979) 171-202. Zbl0439.30034MR556586
  44. [44] Sullivan D., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math.153 (3–4) (1984) 259-277. Zbl0566.58022MR766265
  45. [45] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. Zbl0475.28009MR648108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.