Manifolds with quadratic curvature decay and slow volume growth

John Lott; Zhongmin Shen

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 2, page 275-290
  • ISSN: 0012-9593

How to cite

top

Lott, John, and Shen, Zhongmin. "Manifolds with quadratic curvature decay and slow volume growth." Annales scientifiques de l'École Normale Supérieure 33.2 (2000): 275-290. <http://eudml.org/doc/82515>.

@article{Lott2000,
author = {Lott, John, Shen, Zhongmin},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {topological obstructions; volume growth; quadratic curvature decay; topological finiteness},
language = {eng},
number = {2},
pages = {275-290},
publisher = {Elsevier},
title = {Manifolds with quadratic curvature decay and slow volume growth},
url = {http://eudml.org/doc/82515},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Lott, John
AU - Shen, Zhongmin
TI - Manifolds with quadratic curvature decay and slow volume growth
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 2
SP - 275
EP - 290
LA - eng
KW - topological obstructions; volume growth; quadratic curvature decay; topological finiteness
UR - http://eudml.org/doc/82515
ER -

References

top
  1. [1] Abresch U., Lower curvature bounds, Toponogov's theorem and bounded topology I, Ann. Sci. Ec. Norm. Sup. 18 (1985) 651-670. Zbl0595.53043MR87j:53058
  2. [2] Bonahon F., Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71-158. Zbl0671.57008MR88c:57013
  3. [3] Cheeger J., Critical points of distance functions and applications to geometry, in : Geometric Topology : Recent Developments, Lecture Notes in Math., Vol. 1504, Springer, New York, 1991, pp. 1-38. Zbl0771.53015MR94a:53075
  4. [4] Cheeger J., Gromov M., On the characteristic numbers of complete manifolds of bounded curvature and finite volume, in : Differential Geometry and Complex Analysis, Springer, Berlin, 1985, pp. 115-154. Zbl0592.53036MR86h:58131
  5. [5] Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. Zbl0606.53028MR87k:53087
  6. [6] Cheeger J., Gromov M., Chopping Riemannian manifolds, in : Differential Geometry, Pitman Monographs Surveys Pure Appl. Math., Vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 85-94. Zbl0722.53045MR93k:53034
  7. [7] Cheeger J., Gromov M., Taylor M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53. Zbl0493.53035MR84b:58109
  8. [8] Greene R., Complete metrics of bounded curvature on noncompact manifolds, Arch. Math. 31 (1978) 89-95. Zbl0373.53018MR81h:53035
  9. [9] Greene R., Petersen P., Zhu S., Riemannian manifolds of faster-than-quadratic curvature decay, Internat. Math. Res. Notices 9 (1994) 363-377. Zbl0833.53037MR95m:53054
  10. [10] Gromov M., Volume and bounded cohomology, Publ. Math. IHES 56 (1982) 5-99. Zbl0516.53046MR84h:53053
  11. [11] Sha J., Shen Z., Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math. 119 (1997) 1399-1404. Zbl0901.53023MR99a:53046
  12. [12] Soma T., The Gromov volume of links, Invent. Math. 64 (1981) 445-454. Zbl0478.57006MR83a:57014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.