Manifolds with quadratic curvature decay and slow volume growth
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 2, page 275-290
- ISSN: 0012-9593
Access Full Article
topHow to cite
topLott, John, and Shen, Zhongmin. "Manifolds with quadratic curvature decay and slow volume growth." Annales scientifiques de l'École Normale Supérieure 33.2 (2000): 275-290. <http://eudml.org/doc/82515>.
@article{Lott2000,
author = {Lott, John, Shen, Zhongmin},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {topological obstructions; volume growth; quadratic curvature decay; topological finiteness},
language = {eng},
number = {2},
pages = {275-290},
publisher = {Elsevier},
title = {Manifolds with quadratic curvature decay and slow volume growth},
url = {http://eudml.org/doc/82515},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Lott, John
AU - Shen, Zhongmin
TI - Manifolds with quadratic curvature decay and slow volume growth
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 2
SP - 275
EP - 290
LA - eng
KW - topological obstructions; volume growth; quadratic curvature decay; topological finiteness
UR - http://eudml.org/doc/82515
ER -
References
top- [1] Abresch U., Lower curvature bounds, Toponogov's theorem and bounded topology I, Ann. Sci. Ec. Norm. Sup. 18 (1985) 651-670. Zbl0595.53043MR87j:53058
- [2] Bonahon F., Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71-158. Zbl0671.57008MR88c:57013
- [3] Cheeger J., Critical points of distance functions and applications to geometry, in : Geometric Topology : Recent Developments, Lecture Notes in Math., Vol. 1504, Springer, New York, 1991, pp. 1-38. Zbl0771.53015MR94a:53075
- [4] Cheeger J., Gromov M., On the characteristic numbers of complete manifolds of bounded curvature and finite volume, in : Differential Geometry and Complex Analysis, Springer, Berlin, 1985, pp. 115-154. Zbl0592.53036MR86h:58131
- [5] Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. Zbl0606.53028MR87k:53087
- [6] Cheeger J., Gromov M., Chopping Riemannian manifolds, in : Differential Geometry, Pitman Monographs Surveys Pure Appl. Math., Vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 85-94. Zbl0722.53045MR93k:53034
- [7] Cheeger J., Gromov M., Taylor M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53. Zbl0493.53035MR84b:58109
- [8] Greene R., Complete metrics of bounded curvature on noncompact manifolds, Arch. Math. 31 (1978) 89-95. Zbl0373.53018MR81h:53035
- [9] Greene R., Petersen P., Zhu S., Riemannian manifolds of faster-than-quadratic curvature decay, Internat. Math. Res. Notices 9 (1994) 363-377. Zbl0833.53037MR95m:53054
- [10] Gromov M., Volume and bounded cohomology, Publ. Math. IHES 56 (1982) 5-99. Zbl0516.53046MR84h:53053
- [11] Sha J., Shen Z., Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math. 119 (1997) 1399-1404. Zbl0901.53023MR99a:53046
- [12] Soma T., The Gromov volume of links, Invent. Math. 64 (1981) 445-454. Zbl0478.57006MR83a:57014
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.