On the asymptotic geometry of gravitational instantons
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 6, page 883-924
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMinerbe, Vincent. "On the asymptotic geometry of gravitational instantons." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 883-924. <http://eudml.org/doc/272146>.
@article{Minerbe2010,
abstract = {We investigate the geometry at infinity of the so-called “gravitational instantons”, i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular, we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle fibration over a Euclidean three-space, with fibers of asymptotically constant length.},
author = {Minerbe, Vincent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {gravitational instantons; hyperkähler manifolds; asymptotically flat manifolds},
language = {eng},
number = {6},
pages = {883-924},
publisher = {Société mathématique de France},
title = {On the asymptotic geometry of gravitational instantons},
url = {http://eudml.org/doc/272146},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Minerbe, Vincent
TI - On the asymptotic geometry of gravitational instantons
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 883
EP - 924
AB - We investigate the geometry at infinity of the so-called “gravitational instantons”, i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular, we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle fibration over a Euclidean three-space, with fibers of asymptotically constant length.
LA - eng
KW - gravitational instantons; hyperkähler manifolds; asymptotically flat manifolds
UR - http://eudml.org/doc/272146
ER -
References
top- [1] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II, Ann. Sci. École Norm. Sup. 20 (1987), 475–502. Zbl0651.53031MR925724
- [2] S. Bando, A. Kasue & H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math.97 (1989), 313–349. Zbl0682.53045MR1001844
- [3] A. L. Besse, Einstein manifolds, Ergebnisse Math. Grenzg. 10, Springer, 1987. Zbl0613.53001MR867684
- [4] P. Buser & H. Karcher, Gromov’s almost flat manifolds, Astérisque 81, Soc. Math. France, 1981. Zbl0459.53031MR619537
- [5] J. Cheeger, K. Fukaya & M. Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc.5 (1992), 327–372. Zbl0758.53022MR1126118
- [6] J. Cheeger & M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. II, J. Differential Geom. 32 (1990), 269–298. Zbl0727.53043MR1064875
- [7] J. Cheeger, M. Gromov & M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom.17 (1982), 15–53. Zbl0493.53035MR658471
- [8] S. A. Cherkis & N. J. Hitchin, Gravitational instantons of type , Comm. Math. Phys.260 (2005), 299–317. Zbl1085.53038MR2177322
- [9] S. A. Cherkis & A. Kapustin, gravitational instantons and Nahm equations, Adv. Theor. Math. Phys.2 (1998), 1287–1306. Zbl0945.58017MR1693628
- [10] S. A. Cherkis & A. Kapustin, Singular monopoles and gravitational instantons, Comm. Math. Phys.203 (1999), 713–728. Zbl0960.83007MR1700937
- [11] S. A. Cherkis & A. Kapustin, Hyper-Kähler metrics from periodic monopoles, Phys. Rev. D 65 (2002), 084015, 10. MR1899201
- [12] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup.13 (1980), 419–435. Zbl0465.53032MR608287
- [13] G. Etesi & T. Hausel, On Yang-Mills instantons over multi-centered gravitational instantons, Comm. Math. Phys.235 (2003), 275–288. Zbl1028.81039MR1969729
- [14] G. Etesi & M. Jardim, Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons, Comm. Math. Phys.280 (2008), 285–313. Zbl1144.53035MR2395472
- [15] K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimensions, J. Differential Geom.25 (1987), 139–156. Zbl0606.53027MR873459
- [16] M. Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. Zbl0509.53034MR682063
- [17] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser, 1999. Zbl0953.53002MR1699320
- [18] T. Hausel, E. Hunsicker & R. Mazzeo, Hodge cohomology of gravitational instantons, Duke Math. J.122 (2004), 485–548. Zbl1062.58002MR2057017
- [19] S. W. Hawking, Gravitational instantons, Phys. Lett. A60 (1977), 81–83. MR465052
- [20] N. J. Hitchin, -cohomology of hyperkähler quotients, Comm. Math. Phys.211 (2000), 153–165. Zbl0955.58019MR1757010
- [21] A. Kasue, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. École Norm. Sup.21 (1988), 593–622. Zbl0662.53032MR982335
- [22] H. Kaul, Schranken für die Christoffelsymbole, Manuscripta Math.19 (1976), 261–273. Zbl0332.53025MR433351
- [23] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom.29 (1989), 665–683. Zbl0671.53045MR992334
- [24] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom.29 (1989), 685–697. Zbl0671.53046MR992335
- [25] C. LeBrun, Complete Ricci-flat Kähler metrics on need not be flat, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 297–304. Zbl0739.53053MR1128554
- [26] P. Li & L.-F. Tam, Green’s functions, harmonic functions, and volume comparison, J. Differential Geom.41 (1995), 277–318. Zbl0827.53033MR1331970
- [27] J. Lott & Z. Shen, Manifolds with quadratic curvature decay and slow volume growth, Ann. Sci. École Norm. Sup.33 (2000), 275–290. Zbl0996.53026MR1755117
- [28] V. Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, Geom. Funct. Anal.18 (2009), 1696–1749. Zbl1166.53028MR2481740
- [29] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Int. Math. Res. Not. 1992 (1992), 27–38. Zbl0769.58054MR1150597
- [30] G. Tian & J. Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math.196 (2005), 346–372. Zbl1252.53045MR2166311
- [31] S. Unnebrink, Asymptotically flat -manifolds, Differential Geom. Appl.6 (1996), 271–274. Zbl0856.53031MR1408311
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.