On the asymptotic geometry of gravitational instantons

Vincent Minerbe

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 6, page 883-924
  • ISSN: 0012-9593

Abstract

top
We investigate the geometry at infinity of the so-called “gravitational instantons”, i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular, we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle fibration over a Euclidean three-space, with fibers of asymptotically constant length.

How to cite

top

Minerbe, Vincent. "On the asymptotic geometry of gravitational instantons." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 883-924. <http://eudml.org/doc/272146>.

@article{Minerbe2010,
abstract = {We investigate the geometry at infinity of the so-called “gravitational instantons”, i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular, we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle fibration over a Euclidean three-space, with fibers of asymptotically constant length.},
author = {Minerbe, Vincent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {gravitational instantons; hyperkähler manifolds; asymptotically flat manifolds},
language = {eng},
number = {6},
pages = {883-924},
publisher = {Société mathématique de France},
title = {On the asymptotic geometry of gravitational instantons},
url = {http://eudml.org/doc/272146},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Minerbe, Vincent
TI - On the asymptotic geometry of gravitational instantons
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 883
EP - 924
AB - We investigate the geometry at infinity of the so-called “gravitational instantons”, i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular, we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle fibration over a Euclidean three-space, with fibers of asymptotically constant length.
LA - eng
KW - gravitational instantons; hyperkähler manifolds; asymptotically flat manifolds
UR - http://eudml.org/doc/272146
ER -

References

top
  1. [1] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II, Ann. Sci. École Norm. Sup. 20 (1987), 475–502. Zbl0651.53031MR925724
  2. [2] S. Bando, A. Kasue & H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math.97 (1989), 313–349. Zbl0682.53045MR1001844
  3. [3] A. L. Besse, Einstein manifolds, Ergebnisse Math. Grenzg. 10, Springer, 1987. Zbl0613.53001MR867684
  4. [4] P. Buser & H. Karcher, Gromov’s almost flat manifolds, Astérisque 81, Soc. Math. France, 1981. Zbl0459.53031MR619537
  5. [5] J. Cheeger, K. Fukaya & M. Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc.5 (1992), 327–372. Zbl0758.53022MR1126118
  6. [6] J. Cheeger & M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. II, J. Differential Geom. 32 (1990), 269–298. Zbl0727.53043MR1064875
  7. [7] J. Cheeger, M. Gromov & M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom.17 (1982), 15–53. Zbl0493.53035MR658471
  8. [8] S. A. Cherkis & N. J. Hitchin, Gravitational instantons of type D k , Comm. Math. Phys.260 (2005), 299–317. Zbl1085.53038MR2177322
  9. [9] S. A. Cherkis & A. Kapustin, D k gravitational instantons and Nahm equations, Adv. Theor. Math. Phys.2 (1998), 1287–1306. Zbl0945.58017MR1693628
  10. [10] S. A. Cherkis & A. Kapustin, Singular monopoles and gravitational instantons, Comm. Math. Phys.203 (1999), 713–728. Zbl0960.83007MR1700937
  11. [11] S. A. Cherkis & A. Kapustin, Hyper-Kähler metrics from periodic monopoles, Phys. Rev. D 65 (2002), 084015, 10. MR1899201
  12. [12] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup.13 (1980), 419–435. Zbl0465.53032MR608287
  13. [13] G. Etesi & T. Hausel, On Yang-Mills instantons over multi-centered gravitational instantons, Comm. Math. Phys.235 (2003), 275–288. Zbl1028.81039MR1969729
  14. [14] G. Etesi & M. Jardim, Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons, Comm. Math. Phys.280 (2008), 285–313. Zbl1144.53035MR2395472
  15. [15] K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimensions, J. Differential Geom.25 (1987), 139–156. Zbl0606.53027MR873459
  16. [16] M. Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. Zbl0509.53034MR682063
  17. [17] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser, 1999. Zbl0953.53002MR1699320
  18. [18] T. Hausel, E. Hunsicker & R. Mazzeo, Hodge cohomology of gravitational instantons, Duke Math. J.122 (2004), 485–548. Zbl1062.58002MR2057017
  19. [19] S. W. Hawking, Gravitational instantons, Phys. Lett. A60 (1977), 81–83. MR465052
  20. [20] N. J. Hitchin, L 2 -cohomology of hyperkähler quotients, Comm. Math. Phys.211 (2000), 153–165. Zbl0955.58019MR1757010
  21. [21] A. Kasue, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. École Norm. Sup.21 (1988), 593–622. Zbl0662.53032MR982335
  22. [22] H. Kaul, Schranken für die Christoffelsymbole, Manuscripta Math.19 (1976), 261–273. Zbl0332.53025MR433351
  23. [23] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom.29 (1989), 665–683. Zbl0671.53045MR992334
  24. [24] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom.29 (1989), 685–697. Zbl0671.53046MR992335
  25. [25] C. LeBrun, Complete Ricci-flat Kähler metrics on 𝐂 n need not be flat, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 297–304. Zbl0739.53053MR1128554
  26. [26] P. Li & L.-F. Tam, Green’s functions, harmonic functions, and volume comparison, J. Differential Geom.41 (1995), 277–318. Zbl0827.53033MR1331970
  27. [27] J. Lott & Z. Shen, Manifolds with quadratic curvature decay and slow volume growth, Ann. Sci. École Norm. Sup.33 (2000), 275–290. Zbl0996.53026MR1755117
  28. [28] V. Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, Geom. Funct. Anal.18 (2009), 1696–1749. Zbl1166.53028MR2481740
  29. [29] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Int. Math. Res. Not. 1992 (1992), 27–38. Zbl0769.58054MR1150597
  30. [30] G. Tian & J. Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math.196 (2005), 346–372. Zbl1252.53045MR2166311
  31. [31] S. Unnebrink, Asymptotically flat 4 -manifolds, Differential Geom. Appl.6 (1996), 271–274. Zbl0856.53031MR1408311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.