Analytic invariants for the resonance
- [1] Cemapre Rua do Quelhas 6 1200-781 Lisboa Portugal
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 4, page 1367-1426
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- I. Baldomá, T. M. Seara, The inner equation for generic analytic unfoldings of the Hopf-zero singularity, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), 323-347 Zbl1162.34033MR2425046
- N. Burgoyne, R. Cushman, Normal forms for real linear hamiltonian systems with purely imaginary eigenvalues, Celestial Mechanics 8 (1974), 435-443 Zbl0286.34053MR339591
- S. J. Chapman, J. R. King, K. L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), 2733-2755 Zbl0916.34017MR1650775
- Robert L. Devaney, Homoclinic orbits in Hamiltonian systems, Differential Equations 21 (1976), 431-438 Zbl0343.58005MR442990
- J. Dieudonne, Foundations of modern analysis, (1969), Academic Press, New York and London Zbl0176.00502MR349288
- J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164 Zbl0940.32013MR1162558
- Gerald B. Folland, Introduction to partial differential equations, (1995), Princeton University Press, Princeton, NJ, Zbl0841.35001MR1357411
- J. P. Gaivao, Exponentially small splitting of invariant manifolds near a Hamiltonian-Hopf bifurcation, (2010)
- J. P. Gaivao, V. Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example, Nonlinearity 24 (2011), 677-698 Zbl05869305MR2765480
- V. Gelfreich, Reference systems for splittings of separatrices, Nonlinearity 10 (1997), 175-193 Zbl0909.70019MR1430747
- V. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys. 101 (1999), 155-216 Zbl1042.37044MR1669417
- V. Gelfreich, V. Naudot, Analytic invariants associated with a parabolic fixed point in , Ergodic Theory and Dynamical Systems 28 (2008), 1815-1848 Zbl1153.37376MR2465601
- V. Gelfreich, D. Sauzin, Borel summation and splitting of separatrices for the hénon map, Annales de l’institut Fourier 51 (2001), 513-267 Zbl0988.37031MR1824963
- V. G. Gelfreich, Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps, Phys. D 136 (2000), 266-279 Zbl0942.37016MR1733057
- L. Yu. Glebsky, Lerman M., On small stationary localized solutions for the generalized 1d swift-hohenberg equation, Chaos: Internat. J. Nonlin. Sci. 5 (1995) Zbl0952.37021
- V. F. Lazutkin, An analytic integral along the separatrix of the semistandard map: existence and an exponential estimate for the distance between the stable and unstable separatrices, Algebra i Analiz 4 (1992), 110-142 Zbl0768.58017MR1190785
- V. F. Lazutkin, Splitting of separatrices for the chirikov standard map, ((Moscow 1984)), VINITI Zbl1120.37039
- L. M. Lerman, Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system, J. Statist. Phys. 101 (2000), 357-372 Zbl1003.37036MR1807550
- L. M. Lerman, L. A. Belyakov, Stationary localized solutions, fronts and traveling fronts to the generalized 1d swift-hohenberg equation, (2003), 801-806, EQUADIFF 2003: Proceedings of the International Conference on Differential Equations Zbl1105.35317MR2185131
- L. M. Lerman, A. P. Markova, On stability at the Hamiltonian Hopf bifurcation, Regul. Chaotic Dyn. 14 (2009), 148-162 Zbl1229.37056MR2480956
- J.-P. Lochak, D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, 163 (2003, no. 775) Zbl1038.70001MR1964346
- P. Martín, D. Sauzin, T. M. Seara, Resurgence of inner solutions for perturbations of the McMillan map, Discrete Contin. Dyn. Syst. 31 (2011), 165-207 Zbl1230.37069MR2805805
- J. Martinet, J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. 55 (1982), 63-164 Zbl0546.58038MR672182
- P. D. McSwiggen, K. R. Meyer, The evolution of invariant manifolds in Hamiltonian-Hopf bifurcations, Journal of Differential Equations 189 (2003), 538-555 Zbl1024.37035MR1964479
- C. Olivé, D. Sauzin, T. M. Seara, Resurgence in a Hamilton-Jacobi equation, Ann. Inst. Fourier (Grenoble) 53 (2003), 1185-1235 Zbl1077.34086MR2033513
- D. Sauzin, A new method for measuring the splitting of invariant manifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), 159-221 Zbl0987.37061MR1841877
- D. Sauzin, Resurgent functions and splitting problems, New Trends and Applications of Complex Asymptotic Analysis: Around Dynamical Systems, Summability, Continued Fractions 1493 (2006), 48-117, Res. Inst. Math. Sci., Kyoto
- A. G. Sokol’skiĭ, On the stability of an autonomous Hamiltonian system with two degrees of freedom in the case of equal frequencies, Prikl. Mat. Meh. 38 (1974), 791-799 Zbl0336.70017MR391638
- L. Stolovitch, Classification analytique de champs de vecteurs -résonnants de , Asymptotic Anal. 12 (1996), 91-143 Zbl0852.58013MR1386227
- Jan-Cees van der Meer, The Hamiltonian Hopf bifurcation, 1160 (1985), Springer-Verlag, Berlin Zbl0585.58019MR815106
- N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2) 161 (2005), 141-156 Zbl1076.37045MR2150385