Analytic invariants for the 1 : - 1 resonance

José Pedro Gaivão[1]

  • [1] Cemapre Rua do Quelhas 6 1200-781 Lisboa Portugal

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 4, page 1367-1426
  • ISSN: 0373-0956

Abstract

top
Associated to analytic Hamiltonian vector fields in 4 having an equilibrium point satisfying a non semisimple 1 : - 1 resonance, we construct two constants that are invariant with respect to local analytic symplectic changes of coordinates. These invariants vanish when the Hamiltonian is integrable. We also prove that one of these invariants does not vanish on an open and dense set.

How to cite

top

Gaivão, José Pedro. "Analytic invariants for the $1:-1$ resonance." Annales de l’institut Fourier 63.4 (2013): 1367-1426. <http://eudml.org/doc/275487>.

@article{Gaivão2013,
abstract = {Associated to analytic Hamiltonian vector fields in $\mathbb\{C\}^4$ having an equilibrium point satisfying a non semisimple $1:-1$ resonance, we construct two constants that are invariant with respect to local analytic symplectic changes of coordinates. These invariants vanish when the Hamiltonian is integrable. We also prove that one of these invariants does not vanish on an open and dense set.},
affiliation = {Cemapre Rua do Quelhas 6 1200-781 Lisboa Portugal},
author = {Gaivão, José Pedro},
journal = {Annales de l’institut Fourier},
keywords = {analytic classification; Stokes phenomenon; splitting of separatrices; Hamiltonian systems; invariants},
language = {eng},
number = {4},
pages = {1367-1426},
publisher = {Association des Annales de l’institut Fourier},
title = {Analytic invariants for the $1:-1$ resonance},
url = {http://eudml.org/doc/275487},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Gaivão, José Pedro
TI - Analytic invariants for the $1:-1$ resonance
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1367
EP - 1426
AB - Associated to analytic Hamiltonian vector fields in $\mathbb{C}^4$ having an equilibrium point satisfying a non semisimple $1:-1$ resonance, we construct two constants that are invariant with respect to local analytic symplectic changes of coordinates. These invariants vanish when the Hamiltonian is integrable. We also prove that one of these invariants does not vanish on an open and dense set.
LA - eng
KW - analytic classification; Stokes phenomenon; splitting of separatrices; Hamiltonian systems; invariants
UR - http://eudml.org/doc/275487
ER -

References

top
  1. I. Baldomá, T. M. Seara, The inner equation for generic analytic unfoldings of the Hopf-zero singularity, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), 323-347 Zbl1162.34033MR2425046
  2. N. Burgoyne, R. Cushman, Normal forms for real linear hamiltonian systems with purely imaginary eigenvalues, Celestial Mechanics 8 (1974), 435-443 Zbl0286.34053MR339591
  3. S. J. Chapman, J. R. King, K. L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), 2733-2755 Zbl0916.34017MR1650775
  4. Robert L. Devaney, Homoclinic orbits in Hamiltonian systems, Differential Equations 21 (1976), 431-438 Zbl0343.58005MR442990
  5. J. Dieudonne, Foundations of modern analysis, (1969), Academic Press, New York and London Zbl0176.00502MR349288
  6. J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164 Zbl0940.32013MR1162558
  7. Gerald B. Folland, Introduction to partial differential equations, (1995), Princeton University Press, Princeton, NJ, Zbl0841.35001MR1357411
  8. J. P. Gaivao, Exponentially small splitting of invariant manifolds near a Hamiltonian-Hopf bifurcation, (2010) 
  9. J. P. Gaivao, V. Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example, Nonlinearity 24 (2011), 677-698 Zbl05869305MR2765480
  10. V. Gelfreich, Reference systems for splittings of separatrices, Nonlinearity 10 (1997), 175-193 Zbl0909.70019MR1430747
  11. V. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys. 101 (1999), 155-216 Zbl1042.37044MR1669417
  12. V. Gelfreich, V. Naudot, Analytic invariants associated with a parabolic fixed point in 2 , Ergodic Theory and Dynamical Systems 28 (2008), 1815-1848 Zbl1153.37376MR2465601
  13. V. Gelfreich, D. Sauzin, Borel summation and splitting of separatrices for the hénon map, Annales de l’institut Fourier 51 (2001), 513-267 Zbl0988.37031MR1824963
  14. V. G. Gelfreich, Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps, Phys. D 136 (2000), 266-279 Zbl0942.37016MR1733057
  15. L. Yu. Glebsky, Lerman M., On small stationary localized solutions for the generalized 1d swift-hohenberg equation, Chaos: Internat. J. Nonlin. Sci. 5 (1995) Zbl0952.37021
  16. V. F. Lazutkin, An analytic integral along the separatrix of the semistandard map: existence and an exponential estimate for the distance between the stable and unstable separatrices, Algebra i Analiz 4 (1992), 110-142 Zbl0768.58017MR1190785
  17. V. F. Lazutkin, Splitting of separatrices for the chirikov standard map, ((Moscow 1984)), VINITI Zbl1120.37039
  18. L. M. Lerman, Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system, J. Statist. Phys. 101 (2000), 357-372 Zbl1003.37036MR1807550
  19. L. M. Lerman, L. A. Belyakov, Stationary localized solutions, fronts and traveling fronts to the generalized 1d swift-hohenberg equation, (2003), 801-806, EQUADIFF 2003: Proceedings of the International Conference on Differential Equations Zbl1105.35317MR2185131
  20. L. M. Lerman, A. P. Markova, On stability at the Hamiltonian Hopf bifurcation, Regul. Chaotic Dyn. 14 (2009), 148-162 Zbl1229.37056MR2480956
  21. J.-P. Lochak, D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, 163 (2003, no. 775) Zbl1038.70001MR1964346
  22. P. Martín, D. Sauzin, T. M. Seara, Resurgence of inner solutions for perturbations of the McMillan map, Discrete Contin. Dyn. Syst. 31 (2011), 165-207 Zbl1230.37069MR2805805
  23. J. Martinet, J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. 55 (1982), 63-164 Zbl0546.58038MR672182
  24. P. D. McSwiggen, K. R. Meyer, The evolution of invariant manifolds in Hamiltonian-Hopf bifurcations, Journal of Differential Equations 189 (2003), 538-555 Zbl1024.37035MR1964479
  25. C. Olivé, D. Sauzin, T. M. Seara, Resurgence in a Hamilton-Jacobi equation, Ann. Inst. Fourier (Grenoble) 53 (2003), 1185-1235 Zbl1077.34086MR2033513
  26. D. Sauzin, A new method for measuring the splitting of invariant manifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), 159-221 Zbl0987.37061MR1841877
  27. D. Sauzin, Resurgent functions and splitting problems, New Trends and Applications of Complex Asymptotic Analysis: Around Dynamical Systems, Summability, Continued Fractions 1493 (2006), 48-117, Res. Inst. Math. Sci., Kyoto 
  28. A. G. Sokol’skiĭ, On the stability of an autonomous Hamiltonian system with two degrees of freedom in the case of equal frequencies, Prikl. Mat. Meh. 38 (1974), 791-799 Zbl0336.70017MR391638
  29. L. Stolovitch, Classification analytique de champs de vecteurs 1 -résonnants de ( C n , 0 ) , Asymptotic Anal. 12 (1996), 91-143 Zbl0852.58013MR1386227
  30. Jan-Cees van der Meer, The Hamiltonian Hopf bifurcation, 1160 (1985), Springer-Verlag, Berlin Zbl0585.58019MR815106
  31. N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2) 161 (2005), 141-156 Zbl1076.37045MR2150385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.