Index of transversally elliptic D-modules

Stéphane Guillermou

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 2, page 223-265
  • ISSN: 0012-9593

How to cite

top

Guillermou, Stéphane. "Index of transversally elliptic D-modules." Annales scientifiques de l'École Normale Supérieure 34.2 (2001): 223-265. <http://eudml.org/doc/82542>.

@article{Guillermou2001,
author = {Guillermou, Stéphane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {fixed points; index theory; equivariant -module},
language = {eng},
number = {2},
pages = {223-265},
publisher = {Elsevier},
title = {Index of transversally elliptic D-modules},
url = {http://eudml.org/doc/82542},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Guillermou, Stéphane
TI - Index of transversally elliptic D-modules
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 2
SP - 223
EP - 265
LA - eng
KW - fixed points; index theory; equivariant -module
UR - http://eudml.org/doc/82542
ER -

References

top
  1. [1] Atiyah M.F, Elliptic Operators and Compact Groups, Lect. Notes in Math., 401, Springer-Verlag, 1974. Zbl0297.58009MR482866
  2. [2] Atiyah M.F, Bott R, A Lefschetz fixed point formula for elliptic complexes: I, Ann. Math.86 (1967) 374-407. Zbl0161.43201MR212836
  3. [3] Atiyah M.F, Bott R, A Lefschetz fixed point formula for elliptic complexes: II, Ann. Math.88 (1968) 451-491. Zbl0167.21703MR232406
  4. [4] Beilinson A.A, Bernstein J, Deligne P, Faisceaux pervers, Astérisque, 100, 1982. Zbl0536.14011MR751966
  5. [5] Berline N, Vergne M, The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math.124 (1996) 11-49. Zbl0847.46037MR1369410
  6. [6] Brylinski J.L, Differential Operators on the Flag Varieties, Astérisque, 87–88, 1981. Zbl0537.14010
  7. [7] D'Agnolo A, Schapira P, Radon–Penrose transform for D-modules, J. Funct. Anal.139 (1996) 349-382. Zbl0879.32012
  8. [8] Duflo M, Heckman G, Vergne M, Projection d'orbites, formule de Kirillov et formule de Blattner, in: Harmonic Analysis on Lie Groups and Symmetric Spaces, Mem. Soc. Math. France, 15, 1984, pp. 12-65. Zbl0575.22014MR789081
  9. [9] Grothendieck A, La théorie de Fredholm, Bull. Soc. Math. France84 (1956) 319-384. Zbl0073.10101MR88665
  10. [10] Grothendieck A, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc.16 (1955). Zbl0123.30301MR75539
  11. [11] Guillermou S, Lefschetz class of elliptic pairs, Duke Math. J.85 (1996) 273-314. Zbl0876.58046MR1417618
  12. [12] Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc.119 (1965) 457-508. Zbl0199.46402MR180631
  13. [13] Hotta R, Kashiwara M, The invariant holonomic system on a semisimple Lie algebra, Invent. Math.75 (1984) 327-358. Zbl0538.22013MR732550
  14. [14] Kashiwara M, Character, character cycle, fixed point theorem and group representations, in: Representations of Lie Groups, Adv. Stud. Pure Math., 14, 1988, pp. 369-378. Zbl0699.22024MR1039844
  15. [15] Kashiwara M, D-modules and representation theory of Lie groups, Ann. Inst. Fourier43 (1993) 1597-1618. Zbl0823.22013MR1275211
  16. [16] Kashiwara M, Schapira P, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, 1990. Zbl0709.18001MR1074006
  17. [17] Kashiwara M, Schapira P, Moderate and formal cohomology associated with constructible sheaves, Mem. Soc. Math. France (N.S.), 64, 1996. Zbl0881.58060MR1421293
  18. [18] Kashiwara M, Schmid W, Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, in: Lie Theory and Geometry, Prog. Math., 123, 1994, pp. 457-488. Zbl0854.22014MR1327544
  19. [19] Mirkovic I, Uzawa T, Vilonen K, Matsuki correspondence for sheaves, Invent. Math.109 (1992) 231-245. Zbl0789.53033MR1172690
  20. [20] Ochiai H, Characters and character cycles, J. Math. Soc. Japan45 (1993) 583-598. Zbl0840.22021MR1239337
  21. [21] Sato M, Kawai T, Kashiwara M, Microfunctions and pseudo-differential equations, in: Hyperfunctions Pseudo-Differential Equations, Proc. Conf. Katata 1971, Lect. Notes in Math., 287, 1973, pp. 263-529. Zbl0277.46039MR420735
  22. [22] Schapira P, Schneiders J.-P, Index Theorem for Elliptic Pairs, Astérisque, 224, 1994. Zbl0856.58037
  23. [23] Schmid W, Vilonen K, Characters, fixed points and Osborne's conjecture, in: Representation Theory of Groups and Algebras, Contemp. Math., 145, 1993, pp. 287-303. Zbl0811.22006MR1216196
  24. [24] Schneiders J.-P, Quasi-Abelian Categories and Sheaves, Mem. Soc. Math. France (N.S.), 76, 1999. Zbl0926.18004MR1779315
  25. [25] Trèves F, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967. Zbl0171.10402MR225131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.