The solubility of diagonal cubic surfaces

Peter Swinnerton-Dyer

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 6, page 891-912
  • ISSN: 0012-9593

How to cite

top

Swinnerton-Dyer, Peter. "The solubility of diagonal cubic surfaces." Annales scientifiques de l'École Normale Supérieure 34.6 (2001): 891-912. <http://eudml.org/doc/82561>.

@article{Swinnerton2001,
author = {Swinnerton-Dyer, Peter},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {elliptic curve; projective diagonal cubic surface; Hasse principle; Tate-Shafarevich group},
language = {eng},
number = {6},
pages = {891-912},
publisher = {Elsevier},
title = {The solubility of diagonal cubic surfaces},
url = {http://eudml.org/doc/82561},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Swinnerton-Dyer, Peter
TI - The solubility of diagonal cubic surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 6
SP - 891
EP - 912
LA - eng
KW - elliptic curve; projective diagonal cubic surface; Hasse principle; Tate-Shafarevich group
UR - http://eudml.org/doc/82561
ER -

References

top
  1. [1] Bender A.O., Sir Swinnerton-Dyer P., Solubility of certain pencils of curves of genus 1, and of the intersection of two quadrics in P4, Proc. London Math. Soc.83 (3) (2001) 299-329. Zbl1018.11031MR1839456
  2. [2] Cassels J.W.S., Arithmetic on curves of genus 1, I. On a conjecture of Selmer, J. Reine Angew. Math.202 (1959) 52-99. Zbl0090.03005MR109136
  3. [3] Cassels J.W.S., Guy M.J.T., On the Hasse principle for cubic surfaces, Mathematika13 (1966) 111-120. Zbl0151.03405MR211966
  4. [4] Colliot-Thélène J.-L., Surfaces cubiques diagonales, in: Séminaire de théorie des nombres, Paris 1984–85, Progress in Math., 63, Birkhäuser, 1986, pp. 51-66. Zbl0595.14029MR897341
  5. [5] Colliot-Thélène J.-L., Kanevsky D., Sansuc J.-J., Arithmétique des surfaces cubiques diagonales, in: Diophantine Approximation and Transcendence Theory, Springer Lecture Notes, 1290, 1987, pp. 1-108. Zbl0639.14018MR927558
  6. [6] Colliot-Thélène J.-L., Skorobogatov A.N., Sir Swinnerton-Dyer P., Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points, Invent. Math.134 (1998) 579-650. Zbl0924.14011MR1660925
  7. [7] Hasse H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I, Jahresbericht der D.M.V.35 (1926) 1-55. Zbl52.0150.19JFM52.0150.19
  8. [8] Heath-Brown D.R., The solubility of diagonal cubic diophantine equations, Proc. London Math. Soc. (3)79 (1999) 241-259. Zbl1029.11010MR1702242
  9. [9] Kanevsky D., Application of the conjecture on the Manin obstruction to various Diophantine problems, Astérisque147–148 (1987) 307-314. Zbl0625.14010MR891437
  10. [10] Milne J.S., Arithmetic Duality Theorems, Academic Press, 1986. Zbl0613.14019MR881804
  11. [11] Selmer E.S., Sufficient congruence conditions for the existence of rational points on certain cubic surfaces, Math. Scand.1 (1953) 113-119. Zbl0051.03202MR57908
  12. [12] Sir Swinnerton-Dyer P., Some applications of Schinzel's Hypothesis to Diophantine Equations, in: Györy, Iwaniec, Urbanowicz (Eds.), Number Theory in Progress, 1999. Zbl0937.11024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.