Deformation rigidity of the rational homogeneous space associated to a long simple root
Jun-Muk Hwang[1]; Ngaiming Mok
- [1] Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 2, page 173-184
- ISSN: 0012-9593
Access Full Article
topHow to cite
topHwang, Jun-Muk, and Mok, Ngaiming. "Deformation rigidity of the rational homogeneous space associated to a long simple root." Annales scientifiques de l'École Normale Supérieure 35.2 (2002): 173-184. <http://eudml.org/doc/82568>.
@article{Hwang2002,
affiliation = {Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)},
author = {Hwang, Jun-Muk, Mok, Ngaiming},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {rigidity under Kähler deformation; rational homogeneous spaces; Picard number 1},
language = {eng},
number = {2},
pages = {173-184},
publisher = {Elsevier},
title = {Deformation rigidity of the rational homogeneous space associated to a long simple root},
url = {http://eudml.org/doc/82568},
volume = {35},
year = {2002},
}
TY - JOUR
AU - Hwang, Jun-Muk
AU - Mok, Ngaiming
TI - Deformation rigidity of the rational homogeneous space associated to a long simple root
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 2
SP - 173
EP - 184
LA - eng
KW - rigidity under Kähler deformation; rational homogeneous spaces; Picard number 1
UR - http://eudml.org/doc/82568
ER -
References
top- [1] Bourbaki N., Groupes et Algèbres de Lie, Ch. 7–8, Hermann, Paris, 1975. MR453824
- [2] Grothendieck A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math.79 (1957) 121-138. Zbl0079.17001MR87176
- [3] Hwang J.-M., Rigidity of homogeneous contact manifolds under Fano deformation, J. Reine Angew. Math.486 (1997) 153-163. Zbl0876.53030MR1450754
- [4] Hwang J.-M., Stability of tangent bundles of low dimensional Fano manifolds with Picard number 1, Math. Ann.312 (1998) 599-606. Zbl0932.14025MR1660263
- [5] Hwang J.-M., Mok N., Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation, Invent. Math.131 (1998) 393-418. Zbl0902.32014MR1608587
- [6] Hwang J.-M., Mok N., Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds, Invent. Math.136 (1999) 209-231. Zbl0963.32007MR1681093
- [7] Hwang J.-M., Mok N., Varieties of minimal rational tangents on uniruled projective manifolds, in: Schneider M., Siu Y.-T. (Eds.), Several Complex Variables, MSRI Publications, 37, Cambridge University Press, 2000, pp. 351-389. Zbl0978.53118MR1748609
- [8] Humphreys J., Introduction to Lie Algebras and Representation Theory, Grad. Texts Math., 9, Springer, 1972. Zbl0254.17004MR323842
- [9] Kac V., Infinite Dimensional Lie Algebras, Cambridge University Press, 1990. Zbl0716.17022MR1104219
- [10] Kodaira K., On stability of compact submanifolds of complex manifolds, Amer. J. Math.85 (1963) 79-94. Zbl0173.33101MR153033
- [11] Kollár J., Rational Curves on Algebraic Varieties, Ergebnisse Math. 3 Folge, 32, Springer-Verlag, 1996. Zbl0877.14012MR1440180
- [12] Mok N., Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Math., 6, World Scientific, 1989. Zbl0912.32026MR1081948
- [13] Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J.22 (1993) 263-347. Zbl0801.53019MR1245130
- [14] Serre J.-P., Complex Semisimple Lie Algebras, Springer-Verlag, 1987. Zbl0628.17003MR914496
- [15] Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J.8 (1979) 23-84. Zbl0409.17013MR533089
- [16] Yamaguchi K., Differential systems associated with simple graded Lie algebras, in: Progress in Differential Geometry, Adv. Study Pure Math., 22, 1993, pp. 413-494. Zbl0812.17018MR1274961
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.