Deformation rigidity of the rational homogeneous space associated to a long simple root

Jun-Muk Hwang[1]; Ngaiming Mok

  • [1] Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 2, page 173-184
  • ISSN: 0012-9593

How to cite

top

Hwang, Jun-Muk, and Mok, Ngaiming. "Deformation rigidity of the rational homogeneous space associated to a long simple root." Annales scientifiques de l'École Normale Supérieure 35.2 (2002): 173-184. <http://eudml.org/doc/82568>.

@article{Hwang2002,
affiliation = {Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)},
author = {Hwang, Jun-Muk, Mok, Ngaiming},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {rigidity under Kähler deformation; rational homogeneous spaces; Picard number 1},
language = {eng},
number = {2},
pages = {173-184},
publisher = {Elsevier},
title = {Deformation rigidity of the rational homogeneous space associated to a long simple root},
url = {http://eudml.org/doc/82568},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Hwang, Jun-Muk
AU - Mok, Ngaiming
TI - Deformation rigidity of the rational homogeneous space associated to a long simple root
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 2
SP - 173
EP - 184
LA - eng
KW - rigidity under Kähler deformation; rational homogeneous spaces; Picard number 1
UR - http://eudml.org/doc/82568
ER -

References

top
  1. [1] Bourbaki N., Groupes et Algèbres de Lie, Ch. 7–8, Hermann, Paris, 1975. MR453824
  2. [2] Grothendieck A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math.79 (1957) 121-138. Zbl0079.17001MR87176
  3. [3] Hwang J.-M., Rigidity of homogeneous contact manifolds under Fano deformation, J. Reine Angew. Math.486 (1997) 153-163. Zbl0876.53030MR1450754
  4. [4] Hwang J.-M., Stability of tangent bundles of low dimensional Fano manifolds with Picard number 1, Math. Ann.312 (1998) 599-606. Zbl0932.14025MR1660263
  5. [5] Hwang J.-M., Mok N., Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation, Invent. Math.131 (1998) 393-418. Zbl0902.32014MR1608587
  6. [6] Hwang J.-M., Mok N., Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds, Invent. Math.136 (1999) 209-231. Zbl0963.32007MR1681093
  7. [7] Hwang J.-M., Mok N., Varieties of minimal rational tangents on uniruled projective manifolds, in: Schneider M., Siu Y.-T. (Eds.), Several Complex Variables, MSRI Publications, 37, Cambridge University Press, 2000, pp. 351-389. Zbl0978.53118MR1748609
  8. [8] Humphreys J., Introduction to Lie Algebras and Representation Theory, Grad. Texts Math., 9, Springer, 1972. Zbl0254.17004MR323842
  9. [9] Kac V., Infinite Dimensional Lie Algebras, Cambridge University Press, 1990. Zbl0716.17022MR1104219
  10. [10] Kodaira K., On stability of compact submanifolds of complex manifolds, Amer. J. Math.85 (1963) 79-94. Zbl0173.33101MR153033
  11. [11] Kollár J., Rational Curves on Algebraic Varieties, Ergebnisse Math. 3 Folge, 32, Springer-Verlag, 1996. Zbl0877.14012MR1440180
  12. [12] Mok N., Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Math., 6, World Scientific, 1989. Zbl0912.32026MR1081948
  13. [13] Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J.22 (1993) 263-347. Zbl0801.53019MR1245130
  14. [14] Serre J.-P., Complex Semisimple Lie Algebras, Springer-Verlag, 1987. Zbl0628.17003MR914496
  15. [15] Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J.8 (1979) 23-84. Zbl0409.17013MR533089
  16. [16] Yamaguchi K., Differential systems associated with simple graded Lie algebras, in: Progress in Differential Geometry, Adv. Study Pure Math., 22, 1993, pp. 413-494. Zbl0812.17018MR1274961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.