Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N)

Corinne Blondel

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 4, page 533-558
  • ISSN: 0012-9593

How to cite

top

Blondel, Corinne. "Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N)." Annales scientifiques de l'École Normale Supérieure 37.4 (2004): 533-558. <http://eudml.org/doc/82639>.

@article{Blondel2004,
author = {Blondel, Corinne},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {533-558},
publisher = {Elsevier},
title = {Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N)},
url = {http://eudml.org/doc/82639},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Blondel, Corinne
TI - Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 4
SP - 533
EP - 558
LA - eng
UR - http://eudml.org/doc/82639
ER -

References

top
  1. [1] Adler J.D., Self-contragredient supercuspidal representations of GL n , Proc. Amer. Math. Soc. (8)125 (1997) 2471-2479. Zbl0886.22011MR1376746
  2. [2] Blasco L., Blondel C., Types induits des paraboliques maximaux de Sp 4 F et GSp 4 F , Ann. Inst. Fourier (6)49 (1999) 1805-1851. Zbl0937.22010MR1738067
  3. [3] Blasco L., Blondel C., Algèbres de Hecke et séries principales généralisées de Sp 4 F , Proc. London Math. Soc. (3)85 (2002) 659-685. Zbl1017.22010MR1936816
  4. [4] Blondel C., Critère d'injectivité pour l'application de Jacquet, C. R. Acad. Sci. Paris, Ser. I325 (1997) 1149-1152. Zbl0893.22010MR1490115
  5. [5] Blondel C., Une méthode de construction de types induits et son application à G 2 , J. Algebra213 (1999) 231-271. Zbl0912.22004MR1674685
  6. [6] Blondel C., Quelques propriétés des paires couvrantes, Math. Annalen (2004), (in press). Zbl1062.22035MR2115455
  7. [7] Bushnell C.J., Hereditary orders, Gauss sums and supercuspidal representations of GL N , J. Reine Angew. Math.375/376 (1987) 184-210. Zbl0601.12025MR882297
  8. [8] Bushnell C.J., Representations of reductive p-adic groups: localization of Hecke algebras and applications, J. London Math. Soc. (2)63 (2001) 364-386. Zbl1017.22011MR1810135
  9. [9] Bushnell C.J., Henniart G., Local tame lifting for GL N I: simple characters, Publ. Math. IHÉS83 (1996) 105-233. Zbl0878.11042MR1423022
  10. [10] Bushnell C.J., Henniart G., Local tame lifting for GL n II: wildly ramified supercuspidals, Astérisque254 (1999). Zbl0920.11079MR1685898
  11. [11] Bushnell C.J., Kutzko P.C., The Admissible Dual of GL n via Compact Open Subgroups, Ann. of Math. Stud., vol. 129, Princeton University Press, 1993. Zbl0787.22016MR1204652
  12. [12] Bushnell C.J., Kutzko P.C., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc.77 (1998) 582-634. Zbl0911.22014MR1643417
  13. [13] Gelfand I.M., Kazhdan D.A., Representations of the group GL n , K whereK is a local field, in: Lie Groups and their Representations (Proc. Summer School of the Bolya-Janos Math. Soc., Budapest, 1971), Halsted, New York, 1975. Zbl0348.22011MR404534
  14. [14] Kim J.-L., Hecke algebras of classical groups over p-adic fields and supercuspidal representations, Amer. J. Math.121 (1999) 967-1029. Zbl0933.22024MR1713299
  15. [15] Kutzko P.C., Mackey's theorem for nonunitary representations, Proc. Amer. Math. Soc.64 (1977) 173-175. Zbl0375.22005MR442145
  16. [16] Moeglin C., Vignéras M.-F., Waldspurger J.-L., Correspondances de Howe sur un corps p-adique, Lecture Notes in Math., vol. 1291, Springer-Verlag, 1987. Zbl0642.22002MR1041060
  17. [17] Morris L., Tamely ramified supercuspidal representations of classical groups. I. Filtrations, Ann. scient. Éc. Norm. Sup. (4)24 (1991) 705-738. Zbl0756.20006MR1142907
  18. [18] Morris L., Level zero G-types, Compositio Math.118 (2) (1999) 135-157. Zbl0937.22011MR1713308
  19. [19] Roche A., Parabolic induction and the Bernstein decomposition, Compositio Math.134 (2002) 113-133. Zbl1014.22013MR1934305
  20. [20] Shahidi F., A proof of Langlands' conjecture on Plancherel measures: complementary series for p-adic groups, Ann. of Math.132 (1990) 273-330. Zbl0780.22005MR1070599
  21. [21] Shahidi F., Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J.66 (1992) 1-41. Zbl0785.22022MR1159430
  22. [22] Stevens S., Intertwining and supercuspidal types for p-adic classical groups, Proc. London Math. Soc.83 (2001) 120-140. Zbl1017.22012MR1829562
  23. [23] Stevens S., Double coset decompositions and intertwining, Manuscripta Math.106 (2001) 349-364. Zbl0988.22008MR1869226
  24. [24] Stevens S., Types and representations of p-adic symplectic groups, PhD Thesis, King's College London, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.